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I. INTRODUCTION 

The electrochemical activity of organic species in aqueous solution 

ranges from those for which the reaction is reversible to compounds which 

completely lack electrochemical activity. The hydroquinone-quinone 

system is probably the best known of all organic oxidation-reduction 

couples with a reversible reaction at platinum electrodes. The discovery, 

in the early 1920's, that the electrode potential of this half reaction 

is dependent on the hydrogen-ion activity of the solution, as illustrated 

by equation 1, led to an acceptable instrumental method for the measurement 

of pH. The hydroquinone-quinone electrode was used routinely for the 

electrometric measurement of pH during the second quarter of this century 

( 1 ) .  

+ 2H+ + 28" I 

un 0 

Although the hydroquinone-quinone couple is considered reversible 

and exhibits predictable electrochemical behavior, it is among the relative­

ly few organic systems which react in this manner. Of those organic com­

pounds which are at least partially soluble in aqueous solution, a much 

more common observation is an irreversible reaction with deactivation of 

the electrode caused by adsorption of the products of the electrochemical 

reaction. This phenomenon of deactivation is commonly referred to as 

"passivation", "blocking", "poisoning", or "fouling" of the electrode. 
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Electrode deactivation is a serious problem which is not restricted to 

the electroanalysis of organic species. The presence of organic com­

pounds may also affect the electrochemical reactions of inorganic species, 

which normally react in a reversible manner. 

One particular class of compounds which is notorious for its ability 

to deactivate solid electrodes during electrochemical oxidation is the 

monohydroxy derivates of aromatic compounds. This class of compounds is 

generally referred to as "phenols". It should be noted that this name 

is also commonly used in reference to the polyhydroxy derivatives of 

aromatic compounds. This thesis is concerned only with the monohydroxy 

derivatives of benzene. In particular, the electrochemical behavior of 

phenol itself is described. This work was extended to the chlorinated 

phenols to demonstrate the applicability of the technology and electro-

analytical methodology developed for phenol. 

The work which is described in this thesis demonstrates that an 

amperometric detector is applicable for the flow-injection analysis of 

water for phenol and chlorinated phenols. An electrochemical detector 

is described which allows the determination of phenol in aqueous solutions 

at the sub-picomolar level. A method is described for the ̂  situ reactiva­

tion of platinum electrodes which have become deactivated by the adsorption 

of the products of the electrochemical oxidation of phenols. Finally, a 

chromatographic procedure is described which achieves the rapid separa­

tion and determination of phenol and chlorinated phenols in aqueous 

samples. 
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II. LITERATURE REVIEW 

A. Distribution, Production and Uses of Phenols 
and Chlorinated Phenols 

Unsubstituted phenol seldom, if ever, occurs in nature. Although 

phenol can be produced in limited quantities from the distillation of 

coal, there appears to be some question as to whether phenol is actually 

separated from the coal oils during the distillation process or is pro­

duced by chemical reaction during distillation (2). It is common to 

find substituted phenols present throughout the biological world at low 

levels (3). Although hormones are substituted phenols and phenols are 

found in body tissues and intercellular fluids (4-6), biologists are most 

familiar with the phenolic entities tyrosine and thyroxine (7) which are 

shown below. 

CH9-C-COOH HO CHo-C-COOH 

Tyrosine Thyroxine 

In the industrial world, the manufacture of phenol and its derivatives 

is very big business. It is estimated that nearly 1,5 million tons of 

phenol will be produced in the United States in 1979 (8). The two major 

reactions used to produce phenol are: 1) peroxidative cleavage of cumene 

(isopropyl benzene) with acetone as a co-product; and 2) the reaction of 

chlorobenzene with aqueous sodium hydroxide at elevated temperature and 

pressure, known as the Dow Process (9). 
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The uses of phenol are varied; however, the majority of the phenol 

produced is used in the manufacture of plastics, adhesives and synthetic 

fibers (8). With the large-scale use of any chemical comes the problem 

of pollution of water supplies. Since most facilities for water treatment 

in the United States use chlorination as part of their process for treat­

ing water (10), it is not surprising that chlorinated phenols are, on 

occasion, found in potable water supplies. It has been an established 

fact for many years that just a few parts per billion of phenol can impart 

an objectional taste to water following marginal chlorination (11-13). 

The toxicity of phenol and its chlorinated derivatives has been 

both a blessing and a problem to mankind. Early in this century investi­

gators noted the toxicity of phenols to both plant and animal life (14, 

15). Although they demonstrated that controlled doses of phenol were use­

ful in the treatment of diseases such as gonorrhea and malaria (16, 17), 

they also reported that injection or ingestion of phenol, or prolonged 

contact with phenol, could produce serious maladies and even death (15, 

18). The need for accurate, reliable and sensitive methods for the de­

termination of phenol and its derivatives soon became apparent. 

Baekeland's discovery of plastics derived from the condensation re­

actions of phenol and formaldehyde (19, 20) led to large-scale industrial 

use of phenol and the subsequent discharge of phenolic wastes into water­

ways. The introduction of substituted phenols, particularly chlorinated 

phenols, as selective biostatic agents, not only added to the total amount 

of phenol, but also the variety of phenols in the environment. 
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The analysis of aqueous samples for the various chlorinated phenols 

is becoming increasingly important. These compounds have been identified 

in ever increasing quantities in water supplies, and in some cases have 

contaminated entire water reservoirs, both surface and sub-surface. In 

many cases the source of these pollutants can be traced to indiscriminate, 

improper or incompetent disposal of chemical wastes (21). 

Although these chemicals are considered environmental pollutants, 

the use of chlorinated phenols has been beneficial to mankind. The in­

troduction of 3,4,6-trichloro-2-nitrophenol into the tributary streams, 

at a concentration of 30 parts-per-million, virtually eradicated the 

lamprey eel from the Great Lakes of North America. This predator had 

threatened to destroy the fishing industry of the entire Great Lakes 

region (22). 

The compound 2,4,5-trichlorophenol has been successfully used as a 

fungicide and a bacteriocide (23). A derivative of this compound is 

2,4,5-trichlorophenoxyacetic acid. This compound, generally referred to 

as "2,4,5-T", is a naturally occurring plant hormone with herbicidal 

properties (24, 25). A related compound is 2,4-dichlorophenoxyacetic acid 

which has similar herbicidal properties and is commonly referred to as 

"2,4-D". The injection of 2,4-D into old rubber trees has been found to 

increase latex production (26). Advantage has been taken of the herbicidal 

properties of the compounds named above in efforts to increase crop produc­

tion, 

Hexachlorophene had been used as a bacteriostatic agent until quite 

recently (27). It is manufactured by way of an aldol condensation similar 
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to the reaction used to manufacture Bakelite (28-30), This reaction is 

shown in equation II. Dichlorophene is another product of the condensation 

OH OH 

+ CHoO CH 

HO 

of a chlorinated phenol with formaldehyde. This product is used as an 

anthelmintic agent and has been found to be effective in the treatment of 

human cestodiasis (31). Like so many other drugs, dichlorophene produces 

some undesirable side effects, even when properly administered. 

Pentachlorophenol is used on a rather wide scale as a biostatic 

agent (32). It is usually dissolved in an organic solvent due to its 

lack of solubility in aqueous systems. Pentachlorophenol is sold in 

most garden shops and hardware stores for killing vegetation. 

It should be noted that not all of the uses of these types of com­

pounds have been with the best of intentions. Thousands of gallons of 

Agent Orange, a mixture of 2,4-D and 2,4,5-T, and similar chemicals were 

sprayed on the jungles of Viet Nam during the early 1960s by the United 

States Air Force. Defoliation of the jungles was desired to decrease the 

military advantage which the dense jungle offered to opposing forces (33). 

B. Contamination of Chlorophenols by Dioxanes 

The major problem with the use of chlorinated phenols for beneficial 

purposes is contamination of these products by dibenzoparadioxanes, 
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commonly referred to as "dioxins". Dioxanes appear to form spontaneously 

whenever a chlorine atom is in a position ortho to the hydroxy group of 

the phenol. The sequence of reactions necessary to form the paradioxane 

is shown in equations III and IV, Although these reactions are nearly 

identical, the reaction shown in equation III can occur with meta and 

CI HO 

II + HCI HI 

0 
+• HCI 

0 CI HO 

para-chlorophenols, while the reaction shown in equation IV cannot occur 

due to steric hindrance. 

The product of the reaction shown in equation IV is dibenzoparadioxane 

which is not particularly toxic. The toxicity of this particular dioxane 

is greatly increased with chlorine substitution on the aromatic ring. The 

most toxic of the 75 possible chloro-isomers of dibenzoparadioxane is 

2,3,7,8-tetrachlorodibenzoparadioxane which is shown below. This compound 

can be spontaneously formed from 2,4,5-trichlorophenol and is one of the 

CI 

CI 



www.manaraa.com

8 

most toxic and mysterious substances known. The LDgg level of this 

compound is as little as 600 nanograms per kilogram of body weight in 

white mice. Although significant damage in the mice can be found in the 

hepatic, renal and central nervous systems at this level, no single 

system is damaged enough to cause death. The toxicity of this compound 

is observed to vary widely from one species of test animal to another 

(34). Information concerning the effect of 2,3,7,8-tetrachlorodibenzo-

paradioxane on humans is virtually non-existent, as is information about 

long-term exposure at sub-lethal levels. Exposure to 2,3,7,8-tetra-

chlorodibenzoparadioxane has been associated with a skin condition known 

as "chloracne" (35). 

The problem with the use of chlorinated phenols and their derivatives 

appears to be one of weighing the "good" against the "evil"; the "good" 

being the benefits which can be derived from the biostatic properties of 

these compounds, and the "evil" being the harmful side effects of the 

agents used. Some of these harmful effects are the result of contaminants 

which are present in the starting materials, or are formed in the manu­

facturing process of desired compounds. It is interesting at this time 

to note that 2,3,7,8-tetrachlorodibenzoparadioxane can be spontaneously 

formed in 2,4,5-trichlorophenol, which is the starting material from which 

hexachlorophene is manufactured. 

C. Determination of Phenols 

A gravimetric procedure for the determination of phenols was reported 

in 1871 by Landholt which relied upon the rapid and quantitative reaction 
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between phenol and bromine, and the insolubility of the resulting 

brominated product (36). The precipitate was then separated, dried and 

weighed. Another gravimetric procedure for the determination of phenols, 

published in 1889 by Messinger and Vortman, involved the iodination of 

the phenols and was used for the determination of a large number of 

phenols (37, 38). 

Koppeschaar improved upon the bromination procedure by the use of 

in situ generation of bromine by the reaction of bromate with bromide 

in acidic solution. He also discovered that the quantity of phenol in 

solution could be determined by measuring the amount of bromine which re­

mained in solution after the phenol had reacted. This was accomplished 

by adding excess potassium iodide and titrating the iodine which was 

generated with a standard solution of sulfite. Furthermore, Koppeschaar 

noted that this method could be used to measure phenol at levels where 

the solubility of the bromophenol was not exceeded (39). Mascarelli sug­

gested that the reaction should be carried out in alkaline solution (40); 

however, the later work of Olivier supported Koppeschaar's method (41). 

Since the work of Koppeschaar, the only significant alteration of the 

procedure has been the substitution of thiosulfate for sulfite as the 

standard reducing agent. This method, and variations of it, are still 

used today (42, 43). The method can be applied with an accuracy of a few 

parts-per-thousand at a concentration of 0.01 M. 

One of the oldest color-producing reactions of phenol is its reaction 

with ferric ion (44). The colorimetric detection of phenol based on this 
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reaction is still useful in isolated situations. In general, colorimetric 

methods are the so-called "standard methods" for the determination of 

phenols in aqueous samples. In the Gibbs Reaction, phenol is coupled 

with 2,6-dibromoquinonechloroiraide as illustrated in equation V. The 

dibromoindophenol formed has a blue color with an absorbance maxima at 

OH +0 NCI OH + 

620 nm. Although this method works well for phenol, it does not work 

well for para-substituted phenols (45). 

The method prescribed by the American Society for Testing Materials 

(ASTM) for measuring phenols is a colorimetric method which employs 

4-aminoantipyrine (46). Upon reaction with phenol, as shown in equation 

VI, a red dye is formed. The detection limit with this method is 0.10 

,CH 

OH + l 
,c c, 

CH NH: 

•SN 

to 2.0 parts per million (47). The method of the ASTM cannot be used to de­

tect those phenols which are substituted in the para position by aryl, 

alkyl, nitro, benzoyl, nitroso or carbonyl groups (48). 
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Nitrous acid will react with phenols in an alcoholic solution of 

ammonium hydroxide to give a colored quinoid salt. This method has the 

same sensitivity as the ASTM method using 4-aminoantipyrine (47). Other 

reagents which have been used in the colorimetric determination of 

phenols include diazotized sulfanilic acid (49), paradimethylaminobenzalde-

hyde (50), diazotized para-nitroanaline (51), 3-methyl-2-benzothiazalinone 

hydrozone (52), titanium salts in chloroform (53), an ethanolamine-molybdate 

complex (54) and meta-vanadic acid (55), Although these methods are sensi­

tive, they are not ideal. The Gibbs Method is not specific for phenols 

and may require as long as 24 hours for color development. The ASTM 

Method may require 4 hours for full color development. The nitrosophenol 

method may require 24 hours for color development and suffers from a lack 

of reproducibility (56). 

A variety of spectroscopic methods, other than the colorimetric 

methods mentioned above, have been employed for the determination of 

phenols. These include ultraviolet spectroscopy (57-67), infrared 

spectroscopy (68-70), chemiluminescence (71), fluorometry (57), and in­

direct atomic absorption spectroscopy (72). Of these, ultraviolet 

spectroscopy has been the most successful; however, other adsorbing species 

will present serious interferences and this method is not particularly 

sensitive. 

A sensitive fluorometric method has been reported by Afghan et al. 

(57). This method employs an extraction with n-butyl acetate followed by 

fluorometric detection. Good sensitivity was reported; however, Raman 

emission by water at the wavelength of detection does interfere. 
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Phenols can be determined by non-aqueous potentiometric and ampero-

metric titration (73-76), but these methods do not have appreciable sensi­

tivity. Morris developed an indirect amperometric method for phenols 

which did show good sensitivity (77). 

Many gas chromatographic methods have been developed for the de­

termination of phenols (78-81). Fritz, Chang and Chriswell used an ex­

traction procedure to allow for the use of gas chromatography in their 

analysis of water for phenol (81); however, the extraction efficiency 

was poor for many phenols and appeared to be affected by their aqueous 

solubility (82). These procedures do not appear to be applicable at 

concentrations of phenol below 1 part-per-million in all cases. A major 

part of the problem appears to be an inherent incompatibility of aqueous 

samples with the detectors employed (83). 

D. Chemical Oxidation of Phenol 

One of the characteristics of phenol which is frequently listed in 

textbooks is the ease with which it can be oxidized (84, 85). One thing 

which is conspicuously missing from these same textbooks is the identifi­

cation of the products of the oxidation. This omission is probably due to 

the fact that the oxidation of phenol is a very complex process. Although 

a considerable number of reports concerning the oxidation of phenol by 

various oxidizing agents appears in the literature, the mechanism of the 

reaction does not seem to be well-understood. The reaction may proceed 

by way of different mechanisms depending on the identity of the oxidizing 

agents and the conditions employed. 
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One of the cleanest oxidizing agents which the chemist has at his 

disposal is the photon. It should be noted that although the photon is 

a clean oxidizing agent, insomuch as it leaves no readily detectable re­

duction product, it does have attributes which make it something less 

than the ideal oxidizing agent. These attributed include, but are not 

limited to, the inherent relationship of the complexity of the source of 

the photon to the control of its oxidizing power; and the fact that the 

quantum efficiency of the process is dependent upon the variables of the 

system being studied and the apparatus employed for the photochemical 

oxidation. The fact remains, however, that a photon which possesses suf­

ficient energy to cause the ejection of an electron from the particular 

species under study can be thought of as an oxidizing agent. 

In 1912, Gibbs was the first to report that phenol is decomposed under 

irradiation by sunlight (86). Several years later, Sierp and Fransemeier 

(87), reported that the action of sunlight and bacteria will completely 

decompose phenol in sewage, presumably to carbon dioxide and water (87). 

Modem photochemical methods were employed by Land, Porter and Strachan 

to show that the phenoxy radical is produced by these techniques (88); 

and Roebber reported the cleavage of the 1,2-carbon-carbon bond in the 

aromatic ring via photolysis (89). 

The choice of oxidizing agent appears to affect the nature of the 

product of the oxidation of phenol. Those agents which have a peroxide 

nature, such as hydrogen peroxide, persulfate and peracetic acid, appear 

to favor hydroxylation of the phenol in question. Those agents which are 

not of a peroxide nature appear to lead to coupled products. 
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The oxidation of phenol by persulfate, Elbs Method (90), has been 

studied by several investigators with regard to mechanistic and synthetic 

application; however, little, if any, analytical utility has evolved 

from this reaction (91-94). These investigators agree on the hypothesis 

that a sulfate radical-anion is involved as an intermediate product. 

The action of peracetic acid on phenol has been studied by Boeseken 

^ (95, 96) who found a considerable amount of cis-cis-muconic acid 

in addition to quinone in the mixture of reaction products. It is note­

worthy that catechol was not found as a product in this reaction. Cosgrove 

and Waters (97) found that monobenzoates of catechols are produced by the 

action of benzoyl peroxide on phenols. 

The oxidizing agent most extensively employed in the study of the 

oxidation of phenol has been hydrogen peroxide. In most studies a 

catalyst has been found desirable. The list of catalysts includes phos­

phorus compounds (98-100), ultraviolet light (101), various metal oxyanions 

(102), transition metal cations (103-105), and chelates of metal ions (106). 

The most frequently employed catalyst is iron as either the ferrous or 

ferric ion. 

The combination of ferrous ion with hydrogen peroxide is Fenton's 

Reagent. It is thought that ferrous and ferric ions catalyze the genera­

tion of hydroxyl radicals from hydrogen peroxide (107). An earlier re­

port by Wieland and Wilhelm proposed that iron also catalyzes the forma­

tion of peroxide from dissolved oxygen in aqueous solutions (108). The 

major products for the oxidation of phenol by hydrogen peroxide are re­

ported to be catechol, hydroquinone and other hydroxylated species with 
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the products of coupling reactions being reported in lesser amounts (98, 

99, 101, 109-111). 

Oxidation of phenol by reagents other than peroxides occurs with ex­

traction of one or more electrons. This type of oxidation reaction appears 

to favor coupling of the products. The action of permanganate ion on 

phenol was studied by Dore, Legube and Merlet (112). Many of the 

products found were those which are produced by coupling reactions. 

Spencer used sulfatocerate to determine phenol in aqueous solution (113); 

the method relied on the predictable coupling of phenols. Pummerer em­

ployed ferric ion and ferricyanide in his extensive studies on the oxida­

tion of organic species (114, 115). Lead dioxide was employed in the 

oxidation of ortho-cresol by Goldschmidt, Schultz and Berhard (116). In 

all of these cases, coupling was observed to be the predominant reaction. 

Taylor and Battersby summarized the conditions and oxidizing agents which 

are best suited when the coupling reaction is preferred (117). It should 

be noted that oxidation of phenol by air, in the absence of catalysts, 

usually results in the coupling reactions (117, 118). 

E. Electrochemical Oxidation of Phenols 

Reports of the electrochemical reduction of phenols can be found in 

the literature, but such reports are rare (119, 120). Reports of the 

electrochemical oxidation of phenols are more common, but they are not 

numerous. The major problem with the electrochemical oxidation of phenols 

is that intermediate products and/or final products of the reaction tend to 
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form an insoluble polymeric film which adheres to the electrode surface. 

This film severely retards the transport of electroactive species to the 

electrode surface and eventually the electrode is insulated from the 

conducting solution. 

During the second decade of this century, Fichter and co-workers 

extensively investigated the anodic oxidation of aromatic compounds (121-

124). While some soluble products were found in solution, the problem of 

film formation was not solved and no suggestions were offered for dealing 

with this problem. Other workers have reported similar problems with the 

formation of films during the anodic oxidation of phenol and other aro­

matic compounds on solid electrodes (125-133). 

Platinum and graphite electrodes have been used most often in the 

electroanalysis of organic compounds, but other electrode materials have 

also been employed (134-138). Many investigators describe an adsorbtion 

phenomenon at the electrode surfaces, but are not clear whether the adsorbed 

species is the intact phenol or a product of the anodic reaction (138-140). 

Other investigators flatly state that the adsorbed species is the phenoxy 

radical produced by the anodic reaction (125, 127, 129, 131, 132, 141-144). 

The fate of the phenoxy radical deteraines the overall course of the anodic 

reaction and this fate is undoubtedly influenced by the local environment 

of the radical. Little work has been done to investigate the electro­

chemical oxidation of phenol since the time of Fichter (cited in 145). 

The fact remains that the formation of polymeric films on solid 

anodes is a serious and persistent problem not only with phenol but also 
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with other organic compounds. Perhaps the problem is best summarized by 

Hedenburg and Preiser who studied the anodic oxidation of phenol at a 

platinum electrode (125); 

...the current rose and then gradually dropped back. If 
left at this potential long enough, the current dropped back 
to that of the blank curve. A black deposit was found on the 
electrode after such treatment. This deposit was insoluble 
in acetone, dioxane, chromic acid, nitric acid or strong 
alkali. The formation of the deposit gradually insulated the 
electrode from the cell, causing the observed current to drop. 
Attempts to eliminate the formation of the deposit by adding 
dioxane to the cell and purging with nitrogen failed. The only 
way found to clean the electrode was to bum off the deposit in 
the flame of a Bunsen burner for 30 seconds prior to each run. 



www.manaraa.com

18 

III. THEORETICAL CONSIDERATIONS 

A. Reactions of Radicals 

1. Characteristics of phenoxy radicals 

The oxidation of phenol is a complex process which is not well-

understood because of the large variety of products which have been 

identified. The first step in the anodic reaction has been concluded by 

Gileadi and others (129, 130, 132, 142, 143, 146-148) to be a 

one-electron oxidation to produce the phenoxy radical as represented by 

Equation VII. Although this conclusion was based on data obtained for 

solid electrodes and may not apply for other oxidizing conditions, it is 

reasonable to assume that for a multielectron process the electrons are 

transferred one at a time. Additional evidence for the existence of the 

phenoxy radical as an intermediate species does exist (149-153). 

Since radicals are known to be very reactive in nature, one would 

not expect a continued buildup of radicals to occur near the surface of 

the electrode. The fate of the phenoxy radical appears to be affected 

by its environment. The phenoxy radical is, however, different from many 

other radicals in that it is stabilized by resonance as shown in equation 

VIII. This resonance is not only useful in understanding the stability 

+ 14+ 4- €1- TZN 

3zin 
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of the phenoxy radical, but is also helpful in explaining chemical re­

actions of the radical. 

2. Hetero-radical reactions 

The simplest reaction which can occur for the phenoxy radical is 

bond formation with another radical. Consider the reaction of hydrogen 

peroxide with phenol. The first step is assumed to be the extraction 

of an electron by a hydroxy radical which is quickly followed by depro-

tonization of the resulting cation radical. Alternatively, these two 

steps may occur simultaneously and, taken together, described as a hydrogen-

atom extraction as shown in equation IX. 

Measurements by ESR spectrometry have proven the existence of the 

phenoxy radical in reactions of the type shown in equation IX (153). The 

phenoxy radical can then couple with another hydroxyl radical to form a 

second intermediate as shown in equation X. This second intermediate 

product can tautomerize to the corresponding quinone. This reaction 

IX 

H OH 

X 
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sequence seems even more reasonable if one considers the possibility 

that the hydrogen peroxide molecule enters the hydration sphere of the 

phenol molecule before dissociating to form the hydroxy radicals. By 

that mechanism, all the participating species for the entire reaction 

sequence would be contained within the same hydration sphere. 

If one considers other peroxides to be simply substituted deriva­

tives of hydrogen peroxide, then ester formation seems reasonable. Mono-

benzoates of catechols were found as one of the products of the reaction 

between phenol and benzoyl peroxide (96). During the course of that re­

action, the esters formed can also undergo hydrolysis and/or trans­

es terification. 

The reaction between phenol and persulfate is also analogous to the 

case of oxidation by hydrogen peroxide. Equation XI shows the extraction 

+ SgO" L II + so; + H so; 

of a hydrogen atom from phenol and the generation of both the phenoxy 

radical and the radical anion of sulfate. The two radicals can then couple 

as shown in equation XII (ortho reaction is shown) which produces the 

phenoxysulfate anion as an intermediate product which can react further 

I + so; — H Ĵ o-soj m 
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according to equation XIII. The product of reaction XIII will undergo 

protonation and tautomerization to yield the corresponding quinone. 

zrrc o-so: + H«o O + H so 

3. Homo-radical reactions 

Any time phenoxy radicals are formed, one of the possible reactions 

is the direct coupling of phenoxy radicals with one another. From a con­

sideration of the four resonance structures shown in equation VIII, one 

concludes that six distinct isomers can be obtained. These are shown in 

equation XIV A-F. Dimer A is a peroxide and would be expected to be 

OH HO 

very reactive. The ease with which the oxygen-oxygen bond in peroxides 

is broken is well-documented. This in turn regenerates the phenoxy 
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radicals from which the peroxide was formed. Robinson has suggested that 

the diphenyl peroxide (structure A) can undergo a benzidine type of re­

arrangement to give structure D (154). 

The dimers formed from the coupling of two phenoxy radicals are 

themselves phenols, and are not immune to further reaction. Structures B» 

C and D are hydroquinone-type structures and can be expected to undergo 

oxidation to the corresponding quinones as is illustrated in equations 

XV, XVI and XVII. Structures E and F cannot undergo a reaction of this 

type. Therefore, further oxidation of dimers E and F will produce radicals 

OH 0 

+  2 H * + 2 e ~  Z Z  

.OH 0 

0+2H'^+2e" zzr 

HO V \// VoH — 0 0+2H++2e- 23Zn 

which are similar in nature to those shown in equation VIII and would be 

expected to have similarly stabilized resonance structures and undergo re­

actions similar to those of phenol. 
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4. Oxidation to the phenoxonium ion 

Another possible reaction of the phenoxy radical is oxidation to 

the phenoxonium ion, as illustrated by equation XVIII. This cation exists 

+ e" •WTTT 

in the resonate forms illustrated in equation XIX, The phenoxonium ion 

SIX 

is a strong electrophile and can attack a neutral molecule of phenol as 

shown in equation XX (para-para coupling shown). The product of this 

XT 

reaction will undergo deprotonation and keto-enol tautomerism to yield 

product D shown in equation XIV. 

It should be noted, at this point, that the coupling of radicals as 

illustrated by equation XIV (D) and the phenoxonium attack illustrated by 

equation XX yield the same final products. Note further that although the 

mechanisms are clearly different, both reactions involve two, one-electron 

oxidations and two phenol molecules. 



www.manaraa.com

24 

5. Reactions with solvent 

Before proceeding further with a discussion of the reactions between 

phenolic molecules, we must consider the fate of a phenoxy radical or 

phenoxonium cation in the absence of another aromatic nucleus. In this 

case the reactive species has only two possible courses to follow. The 

first is the formation of a bond with the oxidizing agent. This is the re­

action described by Gileadi and others (129, 130, 132) and is shown by 

equation XXI. This reaction is trivial and will not be discussed further. 

Pt 
Anode 

Jods. 

The second reaction to be considered is that with the solvent. One 

possible reaction of the phenoxy radical with water is shown in equation 

XXII. The generation of the hydroperoxide may occur; however, it would 

0-H 

I + HgO + H TŒTT 

not be considered a stable species. Should the reaction occur as is il­

lustrated in equation XXIII, the end product would be expected to rapidly 

Ô 0 

I + HgO 
+ H-

Tnrm 
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tautomerize in protic solvents to catechol. The catechol thus formed 

could be further oxidized to the corresponding quinone, Hydroquinone can 

be formed in an analogous manner. 

The reaction of the phenoxonium cation with water can occur to pro­

duce catecol and hydroquinone with the positive charge being carried by 

the expelled hydrogen atom. This is in contrast to the reaction of the 

phenoxy radical, in which the expelled hydrogen carries a single electron. 

The fate of the hydrogen atom is most certainly oxidation to the hydrogen 

ion. 

6. Summary 

The first step in the oxidation of phenol is concluded to be a one-

electron oxidation to produce the phenoxy radical. The fate of this radi­

cal is dependent on its immediate environment. If another radical of 

virtually any kind is available, radical coupling is expected to occur. 

If another radical is not freely available, then the phenoxy radical can 

either react with the solvent or other neutral species, or react again 

with the oxidizing agent to form the phenoxonium cation. The phenoxonium 

cation is expected to react readily with protic solvents. In either case, 

the end product of the initial oxidation may be subject to further oxida­

tion. The products of the dimerization reactions are in some instances 

nothing more than substituted phenols and can react in the same manner as 

phenol itself. Hence, it is reasonable to assume that polymers with a 

highly variable number of monomeric units can be formed by any one, or a 

combination, of the mechanisms described. 
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B. Response of Amperometric Detectors 

1. General treatment of mass transfer 

The limiting response of flow-through electrodes is described by 

the general equation 

I = nFAKiVf^C XXIV 

In equation XXIV, n is the number of electrons in the reaction (equiv 

mol"^), F is the faraday constant (coul equiv"^), A is electrode area 

(cm^), Vf is the fluid flow rate (cm^ sec"^), ct is a fraction which is 

characteristic of electrode geometry and fluid dynamics, and C is the 

concentration of analyte in the stream entering the detector (mol cm"^), 

in equation XXIV is the limiting, specific, mass transfer coefficient 

with units cm^~^® secF"^. The limiting detector current for the con­

tinuous flow of solution containing analyte, at a bulk concentration of 

Cb, has a steady-state value of Iss. The electrolytic efficiency, Eff, 

of the detector for continuous analysis of a stream at a steady-state 

concentration is 

. Ab 
i- = 5pvïcr— =^1'^ 

Eff = IfL = XOT 

••max 

For injection of a small volume of sample, e.g. Vg < 1 mL with 

concentration Cy into a stream of electrolyte passing through the de­

tector, C will likely be decreased below Cb at all points in the sample 

plug because of dispersion within the fluid stream. Hence Ipeak^^ss 

the detection peak. Values of Ipeak naay not be a reliable analytical 

measure of Cb in the sample injected, even with calibration, unless 
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the factors controlling dispersion are maintained constant. For example, 

even small changes in the curvature of tubing which connects the sample 

injection valve to the detector cell can produce changes of several 

percent in Ipeak (155). The area of the detection peak, Qpeak» be 

a more reliable analytical measure of Cy. For small diameter tubing 

(< 1 mm) and moderately low flow rates (0.2 - 5 mL min"^), this area 

is independent of the extent of sample dispersion as given by equation 

XXVI. 

Qpeak =/lidt = nFAK^Vf°/Cdt = nFAIC XXVI 

The efficiency of the detector for flow-injection analysis is given by 

equation XXVII and is identical to that for steady-state analysis. 

AK^Vf^"^ XXVII 
Eff = Qpeak = nFAKiVfO-lygCb ^ AK,Vf°"^ 

Qmax nFVgCb 

2. Problems associated with tubular flow-through electrodes 

The equation of mass transport in a tubular flow-through electrode 

under laminar fluid flow has been solved (156 - 158) and tubular elec­

trodes made of carbon or noble metals have been popularized as flow-

through detectors for continuous analysis of fluid streams (159). The 

construction of a usable tubular electrode system can be a frustrating 

experience. The greatest source of difficulty comes from the degradation 

of the interface between the electrode and the inert material used for 

construction of the cell. Leakage of the electrolyte solution into the 

interface can result in a large increase of the residual current and 

diffusion of analyte into the trapped solution can lead to significant 
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tailing in applications for flow-injection analysis or liquid chromatog­

raphy. Irregularities in the dimensions of the inlet channel, resulting 

from construction error or aging of materials, can result in local tur­

bulence which tends to invalidate the mathematical derivations based on 

assumptions of laminar flow, and calibration of the detector response 

is essential (155), These problems have been experienced for a variety 

of cell materials including Teflon, Kel-F and epoxy. 

There are other disadvantages with the use of tubular electrodes for 

analysis. Tubular electrodes made of noble metals are usually constructed 

by drilling a solid metal rod or disk with the resultant loss of valuable 

metal. The detector cell of a tubular electrode which has been disas­

sembled for examination and/or physical pretreatment of the electrode 

surface cannot easily be reassembled, 

3, A wire flow-through electrode 

A very practical alternative to the tubular electrode is the wire 

flow-through electrode shown in Figure 1, Further details of the construc­

tion are given in section IV-B, This electrode is free of many of the 

difficulties which plague other flow-through electrodes and since its 

inception has performed well in the laboratory for a variety of de­

terminations, which include nitrosamines (160), chromate (161), arsenic 

(162), and phenol (163), The exact treatment of the problem of mass 

transport in the wire flow-through detector would be a formidable chal­

lenge due to the turbulent character of the fluid flow at the entrance of 

the electrode chamber where the direction of flow makes an abrupt change. 
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Figure 1, Wire flow-through detector 

A. Top view 
B. Detector body 

C. Assembled detector 
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Furthermore, no attempt Is made in the assembly of the detector to main­

tain a uniform spacing between the surface of the wire and the wall of 

the tubular channel drilled into the Teflon cell block. It should be 

noted, however, that there is a strong similarity of this detector to 

the "annular" electrode treated theoretically by Ross and Wragg (164) 

and illustrated in Figure 2. In their case, laminar flow was assumed 

for fluid in the annular space surrounding a cylindrical electrode. 

The value of AKiVf was predicted to be given by equation XXVIII. 

AKiVf°= 3.22 [0(a)] 

dgl/S (r2^-ri2)l/3 
XXVIII 

where D is the diffusion coefficient of the analyte (cm^sec ^). The 

remaining terms in equation XXVIII are defined as follows; 

de = 2(r2 - ri) 

a = ri/rg 

ln(l/a) 

0(a) = 
1 - a 0.5 - (1 - a2) 

ln(l/a) - 1 

Assuming equation XXVIII is applicable to the wire electrode, AKj, is cal­

culated to be 24.for r^ = 0.0650 cm, T2 = 0.0760 cm and L = 2.1 cm. 

Since the exponent, a , of Vg in equation XXVIII is 1/3, the slope of a 

plot of log E vs. log Vf is predicted to be -2/3 for applications of the 

detector to steady-state or flow Injection analyses (see equations XXV 

and XXVII). 

4. Summary 

Although the mathematical relationship between electrode current 

and analyte concentration has been solved for a tubular electrode as a 
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Figure 2, Annular electrode 
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function of the experimental parameters, this theoretical response is 

based on the assumption of laminar flow of fluid through the tube and 

the existence of turbulent flow can invalidate the equation. The practical 

result is that, regardless of the care with which the detector was manu­

factured, the analyst must calibrate the response of the detector with 

suitable standards. The wire flow-through electrode has performed well 

and is free of many of the problems associated with the tubular electrode. 

C. Coulometric Electrodes 

1. General principles 

A coulometric flow-through electrode is an electrode which electro-

lyzes 100% of the electroactive analyte which passes through the electrode. 

The relationship between the quantity of charge passing in a coulometric 

electrode, Q, and the number of moles of substance electrolysed, N, is 

given by equation XXIX, where n is the number 

Q = nFN XXIX 

of electrons gained or lost in the electrochemical reaction per molecule 

of electroactive substance (equiv./mole) and F is the faraday constant. 

The value of n is observed to have integral values for simple electro­

chemical reactions. Â simple electrochemical reaction, as used in this 

thesis, is defined as an electrochemical reaction which is not complicated 

by coupled chemical reactions. Furthermore, the reaction is restricted to 

that of one, and only one, electroactive species to produce one, and only 

one, reaction product and the reaction must occur to completion: that is. 
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the rate of the electrochemical reaction must be mass-transport limited. 

This last point is considered trivial and will not be discussed further. 

Non-integral values of n may be observed when two or more simple 

electrochemical reactions occur simultaneously, when the electrochemical 

reaction is coupled to a chemical reaction, or when the flow rate of the 

solution passing through the electrode has exceeded that for which the 

electrode can maintain its coulometric character. Observed values of n 

which are integral, do not guarantee the absence of these conditions 

nor do they guarantee that the electrode process is a single, simple 

electrochemical reaction. For example, if a solution contains equivalent 

quantities of chromium (VI) and iron (III) coulometric reduction of this 

solution will lead to an observed value of n = 2. The value of 2 re­

sulted from a weighted average of 3 and 1, when the reductions are to 

chromium (III) and iron (II). If the solution did not contain equivalent 

quantities of chromium (VI) and iron (III), then the observed value of n 

would be a non-integral number between 1 and 3. 

Consideration of the flow rate deserves further comment here because 

it deals directly with one of the fundamental characteristics of a 

coulometric electrode. For a single, simple electrode process, the value 

of n'which is obtained experimentally is independent of flow rate as 

long as the flow rate is below the maximum value for which the electrode 

can maintain its coulometric character. This maximum flow rate, Vm, can 

be determined experimentally by observing the value of Q as a function of 

flow rate for a known amount of an electrochemically active species of 

known single, simple electrode reaction. 
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2. Simultaneous reactions 

Non-integral values of n may be observed when two or more simple 

electrode reactions occur simultaneously as discussed in the previous 

section. Non-integral values of n may also be observed when a single 

analyte is capable of participating in two or more simple electrode re­

actions as illustrated by equations XXX and XXXI. 

A B + je" XXX 

A F + me" XXXI 

Consider the reactions of phenol. Hydroquinone (HQ) can be formed as 

a result of the oxidation of phenol, (P). Phenol is also known to 

polymerize; however, at this time only the dimerization reaction will be 

considered. These reactions are illustrated by equations XXXII and 

XXXIII where D represents the dimer dibenzohydroquinone. The values of 

P ^ HQ + 2e" XXXII 

2P ^ D + 2e" XXXIII 

n for these two reactions are 2 and 1, respectively. The value of n 

observed is a weighted average of the contributions from each of the two 

simultaneous electrode reactions. Even though the observed value of n 

is likely to have non-integral values in these situations, that value may 

be considered independent of flow rate. 

The effect of concentration must be considered with respect to the 

reactions illustrated by equations XXXII and XXXIII. The rate of the 

dimerization reaction in equation XXXIII has a second-order dependence 

on the concentration of phenol, whereas the rate of the reaction illustrated 

by equation XXXII has a first-order dependence on the concentration of 
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phenol. Although doubling the concentration of phenol will double the 

rate of the equation Illustrated by equation XXXII, it will quadruple the 

rate of the dimerization reaction. Since the value of n for the dimeriza-

tion reaction is less than the value of n for the reaction illustrated 

by equation XXXII, and the observed value of n is a weighted average of 

the contribution of the two reactions, the observed value of n will de­

crease as the concentration of phenol increases. 

3. Coupled reactions 

When the product of an electrochemical reaction spontaneously under­

goes a chemical reaction to form another electroactive species, non-

integral values of n may be observed. This type of reaction is referred 

to as having an ECE mechanism and is illustrated by equations XXXIV, XXXV 

and XXXVI where P, R, DBHQ and DBQ represent phenol, phenoxy radical, 

P R + le" XXXIV 

2R ^ DBHQ XXXV 

DBHQ P» DBQ + 2e" XXXVI 

dibenzohydroquinone and dibenzoquinone, respectively. 

When the flow rate is low, the reaction illustrated by equation 

XXXV occurs entirely within the coulometric electrode and the reaction 

illustrated by equation XXXVI contributes fully to the observed value of 

n. When the flow rate is high, the reaction illustrated by equation XXXV 

has a high probability of occurring downstream of the electrode and the 

contribution to Q of the reaction illustrated by equation XXXVI is 

diminished. Therefore, when coupled chemical reactions occur within a 
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coulometric electrode the observed value of n is found to be an inverse 

function of flow rate. 

The effect of the concentration of phenol must be considered with 

respect to this particular sequence of reactions. The rate of genera­

tion of R has a first-order dependence on the concentration of phenol; 

however, the rate of generation of DBHQ has a second-order dependence 

on the concentration of R and the rate of the reaction illustrated by-

equation XXXVI are directly dependent upon the rate of generation of DBHQ. 

Therefore, the contribution of the reaction illustrated by equation 

XXXVI to the observed value of n will increase as the concentration of 

phenol increases. 

4. Summary 

The observed value of n for an electrochemical reaction is independent 

of the flow rate only for simple electrode reactions. The observed value 

of n for a coupled chemical reaction shows an inverse dependence on the 

flow rate. The observed value of n changes in the same direction (not 

necessarily linearly) as changes in the concentration of phenol for the 

sequence of reactions representing the ECE mechanism, and inversely with 

the concentration of phenol for the simultaneous reactions described. 

The magnitudes of these opposing effects is not known. An increase in 

the observed value of n with an increase in phenol concentration supports 

the conclusion of an ECE mechanism; however, an inverse dependence of 

the observed value of n does not necessarily disprove an ECE mechanism. 

Whether or not an ECE mechanism is involved must be determined by 
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determining whether the observed value of n decreases with flow rate or 

is independent of flow rate. Once the presence or absence of an ECE 

mechanism has been established, the dependence of the observed value of 

n on phenol concentration may allow conclusions concerning the existence 

of simultaneous reactions. 
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IV. APPARATUS AND REAGENTS 

A, Flow-injection Analyzers 

A schematic diagram of the flow-injection analyzer is shown in 

Figure 3. All tubing, tube-end fittings and valves were Cheminert from 

Laboratory Data Control, Riviera Beach, FL, Tubing (0.787-mm i.d.) was 

made of Teflon; tube-end fittings were polypropylene; and valves were 

made from Kel-F. The flow rate of the reagent stream was adjusted by a 

needle valve which was constructed in the Chemistry Shop from Kel-F ac­

cording to the diagram in Figure 4. The flow rate was monitored by a 

flow meter from Gilmont Instruments, Inc., Great Neck, NY. Calibration 

data for this flow meter is shown in Figure 5. 

Figure 6 is a schematic diagram of the liquid chromatograph used for 

isocratic separation of mixtures of chlorinated phenols. The platinum 

wire detector was employed as the detector. The eluent was 0.05 N 

containing 22-29% acetonitrile, by volume. 

A Milton-Roy dual piston pump (Model CK) was used to provide eluent 

flow at pressures of 100 to 400 psi. The output ports of the two pistons 

were connected in a parallel fashion and then connected to a LDC Pulse 

Dampener which had an Acco Helicoid gauge to monitor the eluent pressure. 

The pump and the pulse dampener with pressure gauge were obtained from 

Laboratory Data Control. The flow rate of the liquid chromatograph was 

controlled by indexed adjustment of the piston return stops on the Milton-

Roy pump. Calibration data are shown in Figure 7. In all cases, both 
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Figure 3. Flow injection analyzer 

A. Helium tank 
B. On-off valve 
c. Carrier solution reservoir 1 
D. Carrier solution reservoir 2 
E. Selector valve 

F. Flow control valve 
G. Flow meter 
H. Injection valve 

I. Syringe 
J. Sample container 
K. Detector 

L. Potentiostat 
M. Recorder 



www.manaraa.com

A\ 



www.manaraa.com

Figure 4. Flow control valve 

A. 3/4 in. hex 
B. Kel-F seating nut 
c. 7/8 in. hex 
D. Kel-F receiving insert 
E. 3" taper 
F. Kel-F outer body 
G. Fetfe sealing washer 
H. 5/8 in. X 18 threads 

I. Brass 

J. . 3/8 in. X 56 threads 

K. Aluminum 
L. Locking pin 
M. Kel-F needle 

N. 3/8 in. X 20 threads 
P. % in. X 28 threads 
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Figure 5. Actual flow rate versus meter reading for Gilmont flow meter 



www.manaraa.com

Meter Reading (mL/min) 



www.manaraa.com

Figure 6, Liquid chromatographic analyzer 

A. Sample reservoir 
B. Pump 
c. Pressure gauge 
D. Pulse dampener 
E. Injection valve 
F. Syringe 
G. Sample container 
H. Chromatographic column 
I. Detector 
J. Potentiostat 
K. Recorder 
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Figure 7. Flow rate versus pump setting for Milton-Roy pump 
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index adjustments were set at the same numerical value. 

The chromatographic column (25 cm x 1 cm dia.) was obtained from 

Dionex Corp., Sunnyvale, CA, The chromatographic resin was fully sul­

fonated polystyrene with 4% (W/W) crosslinking by divinylbenzene. Par­

ticle size of the resin was 23-38 um. 

B. Flow-through Detectors 

The flow-through electrodes were of three basic configurations: 

tubular, wire and packed. The tubular configuration was the basis for 

construction of the flow-through electrodes from glassy carbon and a 

conducting polymeric material obtained from Dow Chemical Co. The com­

position of this conducting polymer has been described in the literature 

(136). A schematic diagram of a typical tubular detector is shown in 

Figure 8. Note that both the auxiliary and reference electrodes are 

downstream from the indicator electrode. 

A packed flow-through electrode for coulometric detection was em­

ployed in an effort to gain insight into the mechanism of the electro­

chemical oxidation of phenol. This electrode consisted of a tubular 

platinum electrode which was packed with a large number of small platinum 

chips. This packing process drastically increased the effective surface 

area of the electrode and resulted in exhaustive electrolysis of the 

analyte. 

The wire configuration was chosen as the flow-through design to be 

used with the platinum indicator electrode and is shown in Figure 1. This 
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Figure 8, Tubular detector 

Â. Reference electrode 
B. Auxiliary electrode 
C. Tube end fitting 
D. Teflon tubing 
E. Detector body 
F. Tubular indicator electrode 
G. Electrical contact 
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electrode was designed by this author and was manufactured in the 

Chemistry Shop at Iowa State University, The detector body was machined 

from a rod of 25% glass-filled Teflon (LOin. dia.x 1,5 in,) This material 

was chosen over Teflon and Kel-F due to its machining properties, mechanical, 

strength and relatively low cost, Fetfe was chosen as the material for 

constructing compression seals due to its extraordinary resistance to 

corrosive solutions and its high degree of pliability. Although platinum 

wire was chosen for the indicator electrode in this research, there is no 

reason which would prevent the use of other metals or non-metallic con­

ducting materials. 

All electrical current which passes in this detector is accompanied 

by the movement of ions through the channel connecting the indicator 

electrode with the auxiliary electrode. Thus, any voltage drop due to 

uncompensated cell resistance within this channel affects the true potential 

of the indicator electrode with respect to the reference electrode. This 

problem is significant only if large currents are passed, e,g,>l mA, To 

minimize the effect of uncompensated resistance, a second design was de­

veloped which is shown in Figure 9, Note that the auxiliary and reference 

electrodes are in separate chambers. Channel dimensions are chosen to 

minimize, but not stop, fluid flow through the reference electrode chamber, 

C, Rotated Disc Electrodes 

A platinum disc electrode (No. 134) was obtained from Pine Instrument 

Company, Grove City, PA. This electrode had a geometric surface area of 

0.459 cm^. A glassy-carbon disc electrode, 0.451 cm^, was also used for 
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Figure 9. Modified wire detector 
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comparison. This electrode (No. 196) was also obtained from Pine Instru­

ment Company. 

A pair of platinum disc electrodes, 0.317 cm2, were constructed in 

the Chemistry Shop at Iowa State University, These electrodes were con­

siderably smaller than the previously mentioned disc electrodes and the 

platinum tip was removable. This allowed the disc to be subjected to 

various types of surface analyses such as Auger Spectroscopy and Electron 

Microscopy. 

A disc electrode, 0.317 cm^, was also constructed from the conducting 

polymeric material. 

D. Potentiostat 

Potentiostatic control for all electrochemical experiments was pro­

vided by a three-electrode potentiostat which was assembled in the labora­

tory from high-gain difference amplifiers and commonly available electronic 

components. The amplifiers (Models AZ801M1 and AZ801M2, from Zeltex, Inc.) 

were chosen for their high input impedance. The power supply was Model 

Z15AZ200DP, also from Zeltex. The circuitry of the potentiostat was of 

conventional design (165); however, one modification of the conventional 

circuitry was made to allow the passage of large amounts of current. This 

modification consisted of the optional switching of a current booster into 

the circuit between the control amplifier and the auxiliary electrode. At 

the same time, the current converter was switched out of the circuit and 

the indicator electrode was attached directly to ground. Calculation of 
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the current flowing through the electrochemical cell when the booster 

was operating was made possible by measuring the potential drop across a 

10.0-ohm resistor which was also switched into the circuit between the 

current booster and the auxiliary electrode. The current booster was 

constructed from a matched pair of Motorola HEP silicon transistors 

(Models S0015 and S0019). These transistors have a current capacity of 

600 mA; however, it should be noted that the booster amplifier could not 

be used to its maximum capacity because the power, supply to the potentiom-

eter had a limit of t 200 mA. 

E. Miscellaneous Apparatus 

The reference electrode was a miniature Saturated Calomel Electrode 

(SCE) from the Scientific Instruments Division of the Coming Glass Works, 

Medfield, MA., with saturated sodium chloride as the internal filling 

solution. All potentials are reported with respect to this reference 

electrode. The auxiliary electrode consisted of a platinum wire in contact 

with the solution analyzed. One additional electrode was constructed in 

order that relatively large quantities of the polymeric product from the 

oxidation of phenol could be obtained. This electrode was designated a 

"flag electrode'* and was constructed by spot welding a 10-cm length of 26-

ga platinum wire to a piece of platinum sheet metal with the dimensions 

2.5 cm X 2.5 cm x 0.025 cm. 

All disc electrodes were rotated by a rotator (Model PIR) from Fine 

Instrument Company. The geometric surface area of each disc electrode 

was calculated from measurements made with a traveling microscope 
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constructed in the Chemistry Shop from a microscope (Model 469M) from 

L. S. Starrett Co., Anthol, MA. Electrical signals were recorded on a 

Heath-Schliunberger strip chart recorder (Model SR-204) or a Hewlett-

Packard X-Y recorder (Model 703513), The infrared spectrum was obtained 

on a Beckman recording infrared spectrometer (Model 1R4250). The mass 

spectra were obtained on an AEI double focusing mass spectrometer (Model 

MS 902), The electron microphotographs were obtained on a JEOL scanning 

electron microscope (Model JSM-U3). Calculations of peak areas were 

performed on a Hewlett-Packard (Model 19 C) programmable calculator. All 

potential measurements were made with a Systron-Donner multimeter (Model 

7050), 

F. Reagents and Chemicals 

Phenol and chlorinated phenols were obtained from Aldrich Chemical 

Company. Ultraviolet grade acetonitrile was obtained from Burdick and 

Jackson Laboratories, Muskegon, MI. All other chemicals were obtained 

from either the Mallinckrodt Chemical Company or Fischer Scientific 

Company, All chemicals were reagent grade or better, except as specified 

for several of the chlorinated phenols. Those particular chlorinated 

phenols were obtained in the purest form available. All chemicals were 

used without further purification. Water was triply distilled with de-

ionization after the first distillation, and the second distillation was 

from an alkaline permanganate solution. 



www.manaraa.com

60 

V. EXPERIMENTAL PROCEDURES 

A. Flow-injection Amperometry 

Two carrier solutions were used with the flow-injection analyzers. 

A solution of mixed solvents (29% acetonitrile - 71% 0.05N sulfuric 

acid) was used for the evaluation of electrode materials and as the 

chromatographic eluent. All other flow-injection procedures were performed 

with an aqueous solution of 0.10 M perchloric acid. These carrier solu­

tions were deaerated with helium prior to use. 

Analyte solutions were made by dissolving a weighed amount of analyte 

in the carrier solution employed. This was done in a volumetric flask 

which was then filled to volume with the appropriate carrier solution. 

The sample was then diluted to the desired concentration. The chlorinated 

phenols were dissolved in 60% methyl alcohol - 40% chromatographic eluent 

due to the very low solubility of the tri-, tetra- and pentachlorophenols 

in aqueous solution. Dilutions of these phenols were then made with the 

chromatographic eluent. 

The sample loop of the injection valve was calibrated by two differ­

ent methods. Method A consisted of the collection of ten injections of a 

standard solution of acid with subsequent titration to the phenolphthaleln 

end point by a standard solution of base. The volume of the sample loop 

was calculated to be 0.0709 mL from the average of three determinations by 

Method A. Method B was that employed by Morris (166). A pipette was 

calibrated and used to deliver a known volume of acid Into a flask, which 

was then titrated with base. Ten Injections by the Injection valve of 
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this same acid were then collected and titrated with the same base. The 

volume of the sample loop was calculated from the ratio of the volume of 

base used to titrate the acid delivered by the pipette to that required 

to titrate the acid delivered by the injection valve. A volume of 0.0711 

mL was calculated from the average of three determinations by Method B, 

The final average of the six determinations by the two methods was 

0.0710 mL. 

Removal of the indicator electrode from the wire detector was 

easily accomplished by loosening the tube-end fittings at the ends of 

the wire and pulling the wire out of the channel. To replace the wire, 

it was pushed through the Fetfe seals and the tube-end fittings were 

then tightened with the fingers. During both removal and replacement 

of the wire, neither the tube-end fittings nor the Fetfe seals needed 

to be removed from the detector body. 

Static voltammagrams were constructed by plotting the peak current 

signal, which resulted from an injection of analyte solution, as a func­

tion of electrode potential. The direction of change of the electrode 

potential has been identified on all figures where the data are plotted. 

B. Coulometry 

Cresol was used as an alternate to phenol to test the effect of steric 

hindrance of the electrode reaction. Solutions containing cresol, phenol 

and bromide separately were prepared by dissolving a weighed amount of 

the analytes in 0.10 M perchloric acid in volumetric flasks. The flasks 

were then filled to the mark and dilutions were made from these solutions. 
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Current signals were recorded and integrated. Integration was accomplished 

by Simpson's Approximation. Calculations for this approximation were done 

automatically on the programnable calculator described in the instrumental 

section. The observed value of n was calculated as indicated in equation 

XXIX. 

C. Voltammetry 

Voltammetric experiments were performed in 0.10 M perchloric acid. 

Selected volumes of concentrated solutions of phenol, ferric nitrate and 

sodium chloride were added to the perchloric acid to obtain solutions of 

the desired consistency. The voltammetric reduction wave of ferric ion 

was used as a measure of electrode activity. Phenol was not contained in 

solutions used for electrode reactivation although ferric and chloride 

ion were often present in solutions used for electrode deactivation, Chrono-

amperometric studies of the effect of phenolic films on oxygen réduction were 

performed at platinum electrodes bearing thick phenolic films. These films 

were prepared by electrolysis of a solution of 1.0 mM phenol for 24 hours 

or 0.2 M phenol for 1 hour. 

The disc electrodes manufactured in the Chemistry Shop had no inert, 

protective covering to prevent the shaft of the electrode from participating 

in electrochemical reactions. This problem was circumvented by touching 

the disc portion of the electrode to the solution and then raising the 

disc 2 - 3 mM above the solution surface. Natural adhesive and cohesive 

forces kept the solution in contact with the flat surface of the rotating 

disc electrode. 
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D. Instrumental Characterization of Phenolic Films 

1. Microscopic examination 

Phenolic films of varying thickness and degrees of perforation were 

prepared on the smallest of the platinum disc electrodes. These elec­

trodes were then examined by Electron Microscopy in the Engineering 

Research Institute at Iowa State University. The electrode tips were 

separated from the shafts, mounted in a sample holder, and placed in the 

sample chamber of the microscope. The surface of the disc electrode was 

then observed on a video monitor at magnifications of 300 to 10,000 and 

polaroid photographs were taken of desired areas. Stereoscopic views 

were obtained by taking two photographs of the same area at angles differ­

ing by 8° and then observing the photographs with the aid of a stereoscopic 

viewer. 

2. Spectroscopic analysis 

Sufficient polymeric material for infrared and mass spectroscopic anal­

ysis was obtained by the anodic oxidation of phenol at the flag electrode 

described in section IV-E. The polymeric material was removed mechanically 

and incorporated into a potassium bromide pellet for infrared analysis. Ad­

ditional polymeric material was submitted for mass spectral analysis. 

E, Cleaning Procedures 

1. Disc electrodes 

The recommended procedure for removal of the organic films which are 

formed on platinum disc electrodes during the anodic oxidation of phenol 

is as follows; 

a. Remove the electrode from the phenolic solution and place it in 
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contact with a solution which is 1,0 mM in Ferrie chloride and 0.1 

M in perchloric acid. Place a platinum auxiliary electrode and a 

saturated calomel reference electrode in contact with this same 

solution. Make the necessary connections to the potentiostat. 

b. While rotating the disc electrode, apply an input potential to 

the potentiostat such that the anodic current density is 100 

mA cm"2 or greater. 

c. After 30 sec, change the input potential of the potentiostat 

to 0.0 V vs. SCE. 

d. Test the electrode for electrochemical activity. 

e. Repeat steps a - d as necessary to obtain an electrode with 

full electrochemical activity. 

The rate of rotation (step b) is not critical. Rotation rates of 400 

to 3600 rev min**^ have been employed without affecting the cleaning proce­

dure. Changing the input potential of the potentiostat to 0.0 volts (step 

c) for a brief interval allows reduction of the platinum oxides which are 

formed during the severe anodic polarization. The most convenient test 

of the electrochemical activity of the electrode is to measure its activity 

towards the reduction of iron (III) in the cleaning solution. 

The only reasons for the failure of this procedure to produce fully 

active electrodes have been the existence of excessively thick films and 

instrumental failure. Excessively thick films would be expected to require 

longer cleaning times and this problem should be solved by step e. Al­

ternatively, the cleaning time in step c may be increased. Instrumental 

failure was traced to two sources. The first is that the potentiostat did 

not have sufficient power output. The second was the placement of the 

auxiliary electrode behind a fine-porosity glass frit. Uncompensated cell 
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resistance is an important factor when passing large quantities of current 

in any electrochemical device. This resistance has been found to cause 

potential changes within cells of this type in excess of 0.5 volt in the 

laboratory. Any additional resistance within the cell, such as produced by 

a glass frit, magnifies this problem. 

2. Flow-through electrodes 

The procedure for reactivation of flow-through electrodes is slightly 

easier than for the disc electrodes even though the flow-injection system 

is more complex in its design. A switching valve is inserted into the 

system between the chromatographic column and the detector. This valve al­

lows the carrier stream flowing through the detector to be changed from 

the chromatographic eluent to a solution of 0.1 M ferric chloride in 0.1 M 

perchloric acid. To reactivate a flow-through detector, the following 

procedure is recommended; 

Change the carrier stream flowing through the detector from the 

chromatographic eluent to the cleaning solution by switching 

the appropriate valve. 

. Apply an input potential to the potentiostat such that the anodic 

current density is 100 mA cm"^ or greater for 30 seconds. 

. Return the input potential of the potentiostat to the desired 

value and switch the carrier stream flowing through the de­

tector back to the chromatographic eluent. 

It is recommended that the flow rate of the cleaning solution be as 

high as possible to purge the detector of bubbles which are formed during 

the severe anodic polarization of the electrode. Reduction of the platinum 
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oxide layer on the surface of the indicator electrode is not recommended. 

The detection of phenol is carried out at a potential where the electrode 

surface is oxidized. Waiting for this surface oxide layer to reestablish 

itself is considered to be an unnecessary waste of time. 

Flushing of the cleaning solution from the indicator electrode chamber 

of the wire detector by the chromatographic eluent occurs very rapidly 

due to the low dead volume of this design. The indicator electrode is 

a platinum wire (0.13-cm o.d.) contained in a cylindrical chamber (0.15-

cm i.d.) and the portion of the wire which is exposed to the carrier 

solution is 2.1 cm in length. The calculated cell volume is 0.037 mL. 

3. Other methods 

During the course of this research, another method was discovered 

which resulted in removal of the film. This method consists simply of let­

ting the film air dry for 24 hours or more and then directing a stream of 

water onto the electrode surface. The intact film was easily removed from 

the electrode, often in one piece. Unsuccessful attempts were made to re­

move these phenolic films from platinum electrodes by dissolution in hexane, 

heptane, pentane, cyclohexane, acetone, methanol, ethanol, ethyl acetate, 

methylene chloride, chloroform, carbon tetrachloride, toluene, aqueous 

acid, aqueous base and N,N-dimethylformamide. The film could be removed 

by the application of extreme heat or abrasive procedures; however, these 

methods cannot be considered suitable to routine analysis. 
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VI. RESULTS AND DISCUSSION 

A. Evaluation of Wire Detector 

The investigation of new electrode geometries for hydrodynamic voltam-

metry, and the solution of the equation of mass transport for those 

geometries, has long been fashionable for academic electroanalytical re­

search. While the achievement of higher analytical sensitivity and con­

venience would seem to be sufficient motivation for such research, the 

work is usually considered unfinished unless equations are presented which 

quantitatively predict the shapes of current-potential curves and permit 

quantitative measurement of heterogeneous rate constants. Indeed, from a 

cursory study of the modem literature on analytical voltammetry, one can 

hardly avoid the false conclusion that applications of voltammetry for 

quantitative analysis are possible only if the theoretical relationship 

between the limiting electrode current and bulk analyte concentration is 

fully described as a function of all experimental variables. In practice, 

however, amperometric applications of hydrodynamic voltammetry always rely 

on calibration with suitable standards. Even for an absolute detector 

such as the coulometric flow-through electrode (100% efficient), for which 

the charge is related to the quantity of analyte by Faraday's law, equation 

XXIX, the careful analyst invariably will analyze a standard sample to 

verify the assumption of coulometric operation under the experimental con­

ditions appropriate for analysis of the unknown sample (167). 

The wire configuration was chosen in an effort to increase the avail­

able surface area of the electrode while maintaining the simplicity of the 
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detector. Application of the wire flow-through detector was made for flow-

injection analysis and steady-state analysis of solutions containing 

6.81 X 10'^ M Nal and 1.64 x 10"^ M As (III), The detector efficiency is 

plotted vs. flow rate on a log-log scale in Figure 10. Also shown is the 

value of slope (a - 1) for the estimated linear fit of each set of data. 

The experimental slopes are very nearly equal to the value of -0.667 pre­

dicted by Ross and Wragg for their annular electrode under laminar fluid 

flow (164). The plot of log E vs. log Vf calculated by the function 

AKlVf = 24.2D2/3Vf , using D = 1.99 x 10"^ cm^sec'^ for iodide 

(168), is shown for comparison. 

The precision of results obtained during continuous use of the detector 

is limited by the precision of the control and measurement of the flow rate. 

The large variation of efficiency between experiments apparently resulted 

from disassembly of the detector for inspection. Although clearance between 

the wire and channel wall was chosen such that the open cross-sectional 

area of the channel was approximately equal to the cross-sectional area of 

the incoming fluid stream, no attempt was made to control the position of 

the wire within the IE channel. According to Ross and Wragg (164), the 

spacing between the electrode and the channel wall is important in deter­

mining the numerical value of Ki. Once assembled, the position of the wire 

did not vary within the channel during normal use and was, therefore, 

constant. 

A typical recording of detection peaks for repetitive injections of 

6.81 X 10"^ M Nal in l.OM H2SO4 is shown in Figure 11. The average area 
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Figure 10. Log of detector efficiency versus log of flow rate for wire detector 

Sample volume; 0.226 mL 
Steady state analysis; <>- 6.81 x 10~ M Nal, E = 0.80 V vs. SCE 

• - 1.64 X 10-5 M As(lII), E = 1.0 V vs. SCE 
Flow injection analysis;A- 6.81 x 10"^ Nal, E = 0.80 V vs. SCE 

O- 1.64 X 10-5 ̂  As(IlI), E = 1.0 V vs. SCE 

Theory 
Values of slope given in figure 
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Figure 11. Response of wire detector to repetitive injections of iodide 

Concentration; 6.81 x 10"^ M No. I in 1.0 M HgSO, 
Carrier solution; 1.0 M H2SO4 
Sample volume; 0.226 mL 
Flow rate: 0.99 mL min"^ 
Applied potential: 0.80 V vs. SCE 
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for 4 peaks in the series was 201 ucoul with a relative standard deviation 

of 27 ppt.^ These results agree with other reports concerning the per­

formance of this detector (160, 161, 163). 

B. Flow-injection Amperometry of Phenol 

When studying the electrochemical oxidation of phenol, the analyst is 

faced with problems which are not encountered with the majority of in­

organic reactions. Normally, electrochemical information can be obtained 

in the form of current-potential (I-E) curves employing a rotating disc 

electrode (RDE). This information is useful in choosing an electrode po­

tential for the detection of the analyte at a rate limited by mass trmsport 

rather than heterogeneous kinetics. When the products of the electrode re­

action do not accumulate on the electrode surface, the reaction is expected 

to proceed indefinitely without loss of electrode response. During the 

electrochemical oxidation of phenol, and many other organic compounds, 

the products of the oxidation can be a major concern to the analyst. As 

previously mentioned, these products tend to form polymeric films which ad­

here to the surface of the electrode and distort electrochemical response 

to such a degree that the response is of little quantitative value to the 

analyst. 

When performing electroanalysis with flow-through detectors, such as 

is used in flow-injection analysis, the analyst desires to set the potential 

^Experimental data presented in this section was obtained by Jean A. 
Lown, who is presently employed by the Union Carbide Corp., Bound Brook, NJ. 
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of the Indicator electrode such that maximum analytical sensitivity is ob­

tained. When the use of voltansnagrams which are obtained under dynamic 

conditions does not prove fruitful for obtaining this information, the 

analyst must then resort to other techniques. One technique which has 

proven to be of significant utility is the construction of static voltam-

magrams or pseudo I-E curves. This type of voltammagram is obtained by 

the procedure given in a previous section. 

Figures 12, 13, and 14 are static voltammagrams for phenol in a solu­

tion containing 71% of 0.05 N sulfuric acid and 29% acetonitrile employing 

the platinum wire, glassy carbon tubular, and conducting polymer tubular 

flow-through electrodes. These electrode materials were compared as to 

their suitability for the detection of phenol. All three electrode materi­

als were found to be deactivated by the electrochemical oxidation products 

of phenol. The flow-through electrodes were partially deactivated upon a 

single injection of a solution of phenol whose concentration exceeded 10 

jM, Repeated injections of solutions of phenols whose concentration was 

10 pM. or less resulted in no observable loss of electrode activity. Examina­

tion of these static voltammagrams and the observed uncertainty of the re­

sidual current of each electrode material, led to the conclusion that 

platinum is the superior electrode material for the detection of phenol by 

anodic oxidation. , 

Figure 15 is a static voltammagram for the oxidation of phenol at a 

platinum electrode in 0.10 M perchloric acid. A potential of 1.20 V was 

determined to be the best potential for the flow-injection analysis of' 

phenolic solutions containing phenol in 0.10 M HCIO4 after evaluation of 
I 

i 

I 

i 
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Figure 12. Static voltammagram of phenol at a platinum electrode 

Carrier solution; 29% acetonitrile - 71% 0,05 M sulfuric 
acid 

Phenol concentration: 1.0 ̂  
Sample volume; 0.0710 mL 
Flow rate: 1.0 mL min"^ 
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Figure 13. Static voltannnagram of phenol at a glassy carbon electrode 

Carrier solution; 29% acetonitrile - 71% 0,05 M sulfuric 
acid 

Phenol concentration: 1.0 /uM 
Sample volume: 0.0710 mL 
Flow rate: 1,0 mL min"^ 
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Figure 14. Static voltammagram of phenol at a conducting polymer 
electrode 

Carrier solution; 29% acetonitrile - 71% 0,05 M sulfuric 
acid 

Phenol concentration; 10,0 /iM 
Sample volume; 0,0710 mL 
Flow rate; 1,0 mL min" 
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Figure 15. Static voltammagram of phenol at a platinum electrode 

Carrier solution; 0.10 M perchloric acid 
Phenol concentration; 10.0 /iM 
Sample volume; 0.0710 mL 
Flow rate; 1.0 mL min"^ 

V 
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the data which are shown in Figure 9, A potential of 1.30 V was chosen 

as the best potential for the flow-injection analysis of solutions contain­

ing phenol in the solution containing 71% 0.05N sulfuric acid and 29% 

acetonitrile mixture after evaluation of the data shown in Figure 12. 

These potentials were employed in all subsequent amperometric and 

coulometric analyses of solutions containing phenol. 

Once the proper potential for the oxidation of phenol at a platinum 

electrode had been obtained, the reproducibility of the detector response 

was tested. The detector response to successive injections of 10 /iM phenol 

in 0.10 M perchloric acid is shown in Figure 16. No loss of electrode 

activity was observed and the reproducibility of the detector response was 

considered satisfactory (relative standard deviation = 9.7 ppt). 

Although the electrode responded well to injections of 10 ;jM phenol, 

the oxidation of phenol at higher concentrations resulted in electrode de­

activation. This deactivation process not only affected the response of 

the electrode with respect to phenol, but also with respect to other 

electroactive species. This point was demonstrated by observing the re­

sponse of the platinum wire flow-through detector to bromide at various 

stages of electrode deactivation during the anodic oxidation of phenol. 

Series A of Figure 17 shows the effect of deactivation for the detection of 

a relatively high concentration of phenol at a flow-through electrode. 

Series B shows the response of the electrode to a solution 0.10 mM in 

bromide. The injections of the bromide solution were made alternately with 

the injections of the phenol solution. Peak 0 was obtained for bromide at 
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Figure 16, Response of wire detector to repetitive injections of phenol 

Carrier solution; 0,10 M perchloric acid 
Phenol concentration: 10 
Sample volume; 0,0710 mL 
Flow rate; 1,0 mL min"^ 
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Figure 17. Effect of electrode deactivation on the anodic detection 
of phenol and bromide 

Carrier solution: 0.10 M perchloric acid 
Analyte concentration: A - 1.0 mM phenol 

B - 0.1 mM sodium bromide 
Sample volume: 0.0710 mL 
Flow rate: 1.0 mL min"^ 
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the fully activated electrode prior to the first Injection of phenol, 

Glleadl calculated the thickness of the film on the electrode surface 

at the point when the electrode activity Is lost, based on data obtained 

from charge transfer measurements. He reported a value of about 200 mono­

layers of the phenoxy radical (132). Figure 18 shows the result of a study 

In which the charge which passed in the electrode due to Injections of a 

standard bromide solution is measured and recorded as a function of the 

total charge which passed due to phenol oxidation. The quantity of ad­

sorbed phenol producing a complete loss of electrode activity was calculated 

to be 32 monolayer from the data in Figure 18. This calculation was based 

on the following assumptions: the electrode reaction produces only the 

phenoxy radical which is quantitatively adsorbed, the electrode surface is 

perfectly smooth, and a one-to-one correspondence exists between platinum 

atoms and adsorbed radicals. 

Before taking issue with Glleadl's claim of about 200 monolayers, it 

is prudent to examine the assumptions on which these calculations were 

based. First, there was no reason to assume a one-to-one correspondence 

between phenoxy radicals and platinum atoms. For such an assumption to be 

valid, one must accept a spacing between phenoxy radicals (center-to-

center) which is no greater than 2.8 X in either direction on the surface 

plane of the electrode. The assumption that the only reaction which oc­

curred was the oxidation of phenol to the phenoxy radical, cannot be 

considered valid due to the very nature of the experiment. The only re­

action which phenoxy radicals can undergo which does not Involve further 
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Figure 18. Anodic charge which passed due to injections of a 
standard bromide solution versus the total charge 
which has passed due to phenol oxidation 

Carrier solution; 0.10 M perchloric acid 
Analyte concentration: Phenol - 1.0 mM 

Bromide - 1.0 mM 
Sample volume: 0.0710 ml 
Flow rate: 1.0 mL min"^ 
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oxidation under these conditions is simple coupling. Since a polymeric 

film was being formed on the surface of the electrode, it is certain that 

more than dimerization was occurring. To assume that phenoxy radicals were 

retained quantitatively, one also must assume that numerous layers of 

radicals are in extremely close proximity and that no following reaction 

occurs, not even coupling. This is not plausible. Finally, the assump­

tion of a perfectly smooth electrode is easily invalidated. Figure 19 shows 

an electron microphotograph of the surface of a platinum disc electrode. 

This photograph shows the surface of the electrode as it appears magnified 

by a factor of 5000. This same surface appeared to be mirror smooth to 

the unaided eye. 

Every assumption which was made in the interpretation of the data in 

Figure 18 has been shown to be invalid. The calculated number of monolayers 

of adsorbed phenoxy radical cannot, therefore, be taken seriously. The only 

thing which may be concluded from this study is that the amount of charge 

which must pass due to oxidation of phenol to achieve a total loss of elec­

trode activity is a function of the local concentration of phenol during 

the oxidation process. This conclusion is consistent with a mechanism 

which involves the coupling of reaction intermediates to form a polymeric 

matrix. 

C. Flow-injection Coulometry 

The value of V^Q, the maximum flow rate at which a coulometric electrode 

can maintain its coulometric character, was determined for the coulometric 

electrode which was used in this study by observing the measured value of n 
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Figure 19. Electron microphotograph of a mechanically polished 
platinum disc electrode 

Tilt angle: 0° 

Scanning speed; 80 sec 
Ion beam voltage: 25 KV 
Remarks: Dark areas are holes in the platinum surface 
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for the oxidation of bromide to bromine as a function of flow rate. 

This reaction is known to be a fast one-electron reaction on platinum 

electrodes. The results of this study are shown in Figure 20» This 

study indicated that this particular electrode is coulometric at flow 

rates below 2.0 mL min"^. Once this value had been determined, the ef­

fects of concentration, flow rate, and steric hindrance on the observed 

value of n during the oxidation of phenol was ascertained. 

The effect of the variation of the flow rate on the observed value 

of n is shown in Figure 21. The observed value of n had an inverse rela­

tionship to flow rate at all concentrations measured. In consideration 

of the theoiry presented earlier in this thesis, it is concluded that the 

oxidation of phenol on platinum anodes occurs by way of a coupled chemical 

reaction over the concentration range studied. This process is, in gener­

al, referred to as an ECE mechanism: that is an electrochemical-chemical-

electrochemical sequence occurs in the reaction mechanism. 

The effect of the variation of the concentration of phenol on the ob­

served value of n was also studied. The results of this study are shown 

in Figure 22. The observed value of n was found to decrease with increas­

ing concentration over the entire range of flow rates studied. Comments 

and conclusions based on the result of this study are reserved for a later 

section. 

Orthocresol was chosen as a compound which has properties similar to 

phenol, yet would be sterically hindered in the coupling reactions. The 

results are shown in Figure 23. The observed values of n fbr the oxidation 
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Figure 20. Efficiency of coulometric detector versus flow rate 

Carrier solution; 0.10 M perchloric acid 
Analyte concentration; 8.83 uM sodium iodide 
Sample volume; 0.0710 mL 
Applied potential: 0.800 V vs. SCE 
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Figure 21. Observed value of n for phenol versus flow rate 

Carrier solution; 0,10 M perchloric acid 
Phenol concentration: A - 9.97 x 10"® M 

B - 9.97 X 10-7 M 
C - 9.97 X 10-° M 

Sample volume: 0.0710 mL 
Applied potential: 1.20 V vs., SCE 
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Figure 22. Observed value of n for phenol versus log of phenol 
concentration 

Carrier solution; 0.10 M perchloric acid 
Sample volume; 0.0710 mL 
Flow rate: A - 0.57 mL min-1 

B - 1,05 mL min"l 
C - 1.56 mL min-1 
D - 2.00 mL min-1 

Applied potential; 1.20 V vs. SCE 
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Figure 23. Observed value of n for o-cresol versus flow rate 

Carrier solution: 0.10 M perchloric acid 
o-Cresol concentration; A - 9.44 x 10~® 

B - 9.44 X 10-7 

C - 9.44 X 10-G 
Sample volume; 0.0710 ml 
Applied potential; 1.20 V vs. SCE 
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of orthocresol are higher than the corresponding values of n for phenol 

over the concentration and flow rate ranges studied. It is noteworthy 

that the changes, with respect to flow rate and concentration, in the ob­

served values of n for orthocresol are similar to those observed for 

phenol. It is also noteworthy that change in concentration had a larger 

effect on the changes of the observed values of n for orthocresol than 

phenol. These results are discussed further in a later section. 

D. Voltammetry 

The formation of adherent polymers on the solid electrode surfaces 

during the oxidation of phenol has been documented. The formation of the 

polymer on the electrode surface is concluded to occur as described by 

equation XXXIII. The polymeric film is rapidly built up on the surface 

of the anode and effectively hinders the transport of electroactive species 

from the bulk of the solution to the surface of the electrode. Not only 

does this film appear to affect the orientation and approach of electro-

active species to the surface of the electrode but also to exert control 

over the outward diffusion of the products of electrode reactions. 

The practical result of film formation is that the effective area 

of the electrode and its electrochemical activity is severely decreased, 

as illustrated in Figure 24. This figure consists of a series of voltam-

magrams of the reduction of ferric ion in acidic aqueous solution for vari­

ous degrees of electrode deactivation. The first voltammagram shows the 

current which flows as a function of applied potential for a mechanically 

polished platinum-disc electrode. A well-defined mass transport-limited 
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Figure 24. Response of a platinum disc electrode to reduction of 
Fe(III) at various stages of electrode inactivation by 
the anodic oxidation of phenol 

Solution composition; 2,0 mM ferric nitrate in 0.1 M 
perchloric acid 

Rotation speed: 1600 rev min"^ 
Scan rate; 2.0 V min"^ 
Platinum disc electrode No, 134 
Z indicates approximate 
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current is apparent and the sharp increase of the current due to reduction 

of ferric ion in the range 0.6 - 0.5 V indicates the reaction is kinetical-

ly fast. 

After a small amount of phenol had been oxidized on the electrode, 

the second voltammagram was obtained for reduction of ferric ion. A com­

parison of this voltammagram to the first voltammagram quickly reveals two 

major changes resulting from formation of a film at the electrode surface. 

The first is the decrease in the mass transport-limited current resulting 

from the decrease in the effective area of the electrode. The second 

change is that the half-wave potential (E^) has shifted significantly in 

a negative direction. This indicates that the process by which electrons 

are transferred from the electrode to the ferric ions has been significant­

ly impaired and the heterogeneous constant has been substantially de­

creased. 

Further oxidation of phenol, as shown in the third voltammagram, ex­

tends the effects noted in the second voltammagram. The fourth voltam­

magram shows that the electrode has lost virtually all electroactivity to­

ward ferric ion. Although the small amount of current which does appear 

in the fourth voltammagram can be assigned primarily to charging current, 

it is likely that a small amount of this current was due to reduction of 

ferric ion which managed to penetrate the polymeric film. 

Figure 25 is a series of voltammagrams of the reduction of ferric 

ion at a platinum cathode in acidic solution which were recorded at vari­

ous stages during the electrochemical cleaning of a severely inactivated 

electrode. The first voltammagram shows the response of the electrode 
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Figure 25. Response of a platinum disc electrode to reduction of Fe(IIl) 
at various stages of electrode reactivation 

Solution composition; 10 mM ferric nitrate and 1,0 mM 
sodium chloride in 0.10 M 
perchloric acid 

Rotation speed: 1600 rev min"^ 
Scan rate; 2.0 V min"^ 
Platinum disc electrode No. 134 
Z indicates approximate 
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before the cleaning procedure has commenced. The second voltammagram 

shows the increase in the activity of the electrode towards ferric ion 

reduction after the electrode was exposed to the cleaning procedure for 

a brief period of approximately 20 seconds. Immediately, one notices 

the increase in the mass transport limited current. In addition, the 

half-wave potential is very near to the value of 0.53 V which is predicted 

on the basis of thermodynamics for a reversible reaction. The third and 

fourth voltammagrams, which were recorded after the electrode had been 

successively exposed to the cleaning procedure for additional brief time 

periods, show further increase in the mass transport-limited current. 

The fifth voltammagram shows that the electrode had been restored to full 

electrochemical activity. 

Comparison of the voltammagrams of ferric ion reduction during the 

deactivation procedure (Figure 24) with those obtained during the reac­

tivation procedure (Figure 25) leads one to conclude that the reactivation 

mechanism is not simply the reverse of the deactivation mechanism. The de­

activation process showed not only a decrease in effective surface area 

of the electrode, but also an effect on the kinetics of the electrochemical 

reduction of ferric ion. The reactivation process shows an increase in 

effective surface area of the electrode with little effect on the kinetics 

of the electrochemical reduction of ferric ion. 

The conclusions one may draw from these data are that the polymeric 

film was built up in increasing thickness uniformly across the surface of 

the electrode during the deactivation process. The increasing thickness 

of the film during the deactivation process makes the approach of an 
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electroactive species more and more difficult. In addition, as the de­

activation process continues, the number of active sites on the electrode 

surface steadily decreases. Furthermore, the flux of any other species 

whose presence affects the electrochemical reaction, such as electron-

transfer catalysts, is decreased. Finally, if orientation of the electro-

active species, with respect to the geometry of the electrochemical^/ 

active site on the electrode is at all crucial, then this orientation may 

be hindered. 

In contrast, perforation of the adherent polymeric film occurs 

during the cleaning procedure to expose "clean" areas of the electrode 

at which incoming electroactive species can react. These clean areas act 

as miniature electrodes whose cumulative geometric area is less than the 

total geometric area of the electrode; hence, the mass transport limited 

current which is observed is less than that of a totally reactivated elec­

trode, However, electrochemical reactions which occur on these "clean" 

portions of the electrode occur by a reversible reaction just as is the 

case for an electrode which is fully active. 

Figure 26 is a recording of the residual currents of a clean platinum 

disc electrode in 0.10 M perchloric acid. The anodic wave which begins 

at +0.5 V is due to oxidation of the platinum surface to form a layer of 

platinum oxide. This is a normal phenomenon and is referred to as the 

"platinum oxide wave." Species which chemically bond to the platinum 

surface hinder the onset of this anodic process and the platinum oxide 

wave to be shifted to more positive values of applied potential. This 
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Figure 26, Residual currents for a clean platinum disc electrode 

Solution composition; 0.10 M perchloric acid 
Rotation speed: 1600 rev min"^ 
Scan rate: 2.0 V min'l 
Platinum disc electrode No. 134 
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positive shift is usually quite dramatic for low levels of adsorbing 

species. For example, 1.0 uM iodide in acidic solutions will cause a posi­

tive shift to potentials greater than 1.0 V. 

Other normal features of this residual voltammagram include anodic 

current due to the oxidation of water at potentials greater than +1,20 V; 

cathodic current due to reduction of the oxides of platinum at 0.4 V; and 

the anodic and cathodic currents between -0.25 and +0.10 V are due to de-

sorbtion and adsorbtion of hydrogen onto the platinum surface. The large 

cathodic current which is negative of -0.25 V is due to hydrogen evolution. 

Figure 27 is a recording of residual currents of a platinum disc 

electrode which has been deactivated. The similarity of Figures 26 and 27 

is remarkable. The lack of significant difference in the two curves, 

especially in the region of the platinum oxide wave, leads to the conclusion 

that the phenolic film is not chemically adsorbed to the platinum surface. 

Also, the lack of change in the regions of hydrogen evolution and oxygen 

evolution leads to the conclusion that the phenolic film is permeable to 

water, hydrogen ion, hydrogen gas and oxygen gas. It is thought that 

these species diffuse through the film rapidly because they do not have 

an extensive hydration sphere to impede their progress, 

A series of experiments were performed to test this conclusion, A 

platinum disc electrode was deactivated to the point where the polymeric 

film was clearly visible to the unaided eye. The ability of this electrode 

to reduce dissolved oxygen both in the presence and absence of agents which 

are known to poison the platinum electrode for this reaction was then 
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Figure 27, Residual currents for a deactivated platinum disc electrode 

Solution composition: 0.10 M perchloric acid 
Rotation speed; 1600 rev min"^ 
Scan rate; 2.0 V min"^ 
Platinum disc electrode No. 134 
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tested. A similar series of experiments was performed on the same 

platinum disc electrode without the adherent polymeric film. The results 

of these experiments are shown in Figures 28, 29 and 30. The effect of 

the polymeric film on the oxygen reduction is shown in Figure 28. Note 

that the oxygen current decreases with time even when the electrode, 

without a film is exposed to the solvent only. This slow decrease has 

been given the name "passivation" and is concluded to be due to the ad-

\ sorbtion of impurities from the solvent onto the electrode surface. The 

effect of the film on the poisoning effects of cupric and iodide ions are 

shown in Figures 29 and 30 respectively. The ability of the film to re­

tard the flux of incoming cupric ions and iodide ions is quite evident. 

Even after part of the activity of the electrode toward oxygen reduction 

had been nullified, this lost activity was quickly restored by briefly 

pulsing the potential of the electrode to a value where the platinum was 

oxidized and then returning the potential to the previous value. 

In an attempt to measure the potential which must be applied to the 

potentiostat during the cleaning procedure, the following experiment was 

performed; a disc electrode was fouled until it did not give perceptible 

response to 2.0 mM ferric ion. The electrode was then cleaned, by apply­

ing an input signal of 5.0 V to the potentiostat, until the electrode gave 

approximately a 100 uA response to ferric ion at 0.0 V, The electrode 

was then subjected to various cleaning potentials for 60 seconds and the 

percentage increase in the current due to ferric ion reduction was 

measured. This data is plotted in Figure 31, This figure indicates that 

an applied potential of 2,0 V or greater is sufficient to clean the elec­

trode. 
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Figure 28. Effect of phenolic film on oxygen reduction at a platinum 
cathode 

Solution composition: Air saturated 0.10 M perchloric acid 
Rotation speed: 1600 rev. min"^ 
Applied potential: 0.100 V vs. SCE 
Platinum disc electrode No. 134 
Curve A - Electrode without phenolic film 
Curve B - Electrode with phenolic film 
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Figure 29. Effect of phenolic film on oxygen reduction at a platinum 
cathode in the presence of Cu(II) 

Solution composition: Air saturated 10 ;iM cupric nitrate 

in 0.10 M HCIO4 
Rotation speed: 1600 rev min"^ 
Applied potential: 0.100 V vs. SCE 
Platinum disc electrode No. 134 
Curve A - Electrode without phenolic film 
Curve B - Electrode with phenolic film 
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Figure 30. Effect of phenolic film on oxygen reduction at a platinum 
cathode in the presence of iodide 

Solution composition: Air saturated IQ pM sodium iodide 
in 0.10 M perchloric acid 

Rotation speed; 1600 rev min"^ 
Applied potential; 0.100 V vs. SCE 
Platinum disc electrode No. 134 
Curve A - Electrode without phenolic film 
Curve B - Electrode with phenolic film 
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Figure 31. Increase in electrode activity versus cleaning potential 

Solution composition: 1,0 mN ferric nitrate and 1.0 mM sodium 
chloride in 0,10 M perchloric acid 

Rotation speed: 1600 rev, min" 
Platinum disc electrode No. 134 
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An applied potential of 2.0 V is sufficient to clean the electrode 

once the cleaning process had been initiated. Note^that in the above 

experiment the electrode was partially cleaned before the measurements 

were made. An input potential of 2,0 V was found to be insufficient to 

initiate the cleaning process. The exact nature of the polymeric film is 

very difficult, if not impossible, to reproduce. Once the.electrode has 

lost its electrochemical activity, the film continues to increase in 

thickness but at an uncontrolled rate. This makes the starting point, 

in any experiment attempting to measure the effect of the cleaning process 

on an intact film, ill-defined at best. It was noted, however, that input 

potentials to the potentiostat of 3.0 V or greater would rapidly initiate 

the cleaning process in the presence, of course, of ferric and chloride 

ions, regardless of the nature of the film. A current density of ap­

proximately 400 mA cm"^ was observed under these conditions. This high 

current density is thought to be as important to the cleaning procedure 

as the presence of ferric and chloride ions. 

An attempt was also made to determine the stoichiometric ratio of 

ferric ion to chloride ion which would provide the maximum efficiency of 

the cleaning procedure. Although the experiment was considered a quanti­

tative failure, due to the difficulty of reproducing the character of the 

film, the conclusion can be made that both ferric ion and chloride ion 

are necessary for the cleaning process to occur. 
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E. Instrumental Characterization of Phenolic Films 

1, Microscopic examination 

Figure 32 is an electron microphotograph of the surface of a platinum 

disc electrode which had been severely deactivated by a thick film of poly­

meric material. Note that polishing marks can still be identified un­

derneath the film. Figure 33 is an electron microphotograph of a platinum 

disc electrode which was deactivated to the same extent and then partially 

cleaned. The perforations in the polymeric film are quite evident. 

Three dimensional images of this surface in Figure 33 were obtained 

by taking a second electron microphotograph of the same area at an angle 

which is 8° different from the first. The two photographs were then 

viewed with the aid of a stereoscopic viewer. Such three dimensional ob­

servations often revealed fragments of the film which were attached to 

the surface of the electrode on one edge only. Occasionally the remainder 

of those particular fragments were found to be projecting away from the 

surface of the electrode at various angles; however, in most observations 

the fragments of the film were found to be folded completely back onto 

the surface of the adjoining film. 

Voltammagrams for the reduction of ferric ion, which were obtained 

immediately after partial reactivation of a fouled platinum disc electrode 

are shown in Figure 25, An electron microphotograph of a partially re­

activated surface was shown in Figure 33, The photograph and the voltam­

magrams have been discussed. If the potential of a partially clean elec­

trode was allowed to scan in a cyclic manner in the range of +0.7 to 0.0 V 

for several minutes, the value of for the ferric ion reduction wave was 
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Figure 32. Electron microphotograph of a platinum electrode covered 
with a phenolic film 

Tilt angle; 0° 
Scanning speed: 50 sec 
Ion beam strength: 25 KV 
Remarks : None 
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Figure 33. Electron microphotograph of a partially cleaned platinum 
disc electrode 

Tilt angle: 0° 
Scanning speed: 50 sec 
Ion beam strength; 25 KV 
Remarks ; None 
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observed to shift slowly in a negative direction from the thermodynamic 

value. In addition, the limiting current was observed to decrease simul­

taneously with the shift of the value. Subsequent microphotogtaphs 

of the electrode revealed that the edges of the film surrounding the 

exposed regions of platinum had become very diffuse as shown in Figure 34. 

If this process was allowed to continue, the exposed portions of the 

platinum surface were completely obliterated as shown in Figure 35. Ap­

parently, small organic molecules, oligomers, dissolved in the film, 

flowed along the surface of the electrode from the intact portion of the 

film onto the freshly cleaned platinum regions. This resulted in a loss 

of electrochemical activity on those sections of the platinum surface. 

Thus, the polymeric films which had been damaged by partial cleaning were 

able to undergo a "healing" process. When the electrode had been cleaned 

to such an extent that 80% or more of its full electrochemical activity 

had returned, then the healing phenomena was not observed to occur, even 

for extended voltammetric cycling. 

2. Infrared spectroscopy 

The infrared spectrum of the polymeric material is shown in Figure 

36. This spectrum is for the dried material which had been incorporated 

into a potassium bromide pellet. The broad absorbtion band centered at 

3400 cm'l is indicative of hydrogen bonding of the alcoholic (phenolic) 

groups within the polymer. This band would be expected to be much broader 

for more acidic hydroxy groups such as those found in water or organic 

acids. The absorbtion at 1655 cm"^ must be assigned to quinoidal struc­

tures; however, whether or not the carbonyl groups are on the same ring 
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Figure 34, Electron microphotograph of a platinum disc electrode 
with a partially healed phenolic film 

Tilt angle; 0° 
Scanning speed; 50 sec 
Ion beam strength; 25 KV 

Remarks; Diamond particle in center of photograph 
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Figure 35. Electron microphotograph of a platinum disc electrode with 
a completely healed phenolic film 

Tilt angle; 0° 

Scanning speed; 50 sec 
Ion beam strength; 25 KV 
Remarks; Diamond particle in center of photograph 
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Figure 36, Infrared spectrum of polymeric material 

Phase: Solid-potassium bromide pellet 
Speed: 300 cm"^ min"^ 
Gain: 1.2 
Scale: 20% 
Offset: 50 
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in the conjugated tt system is not clear. The absorbtion bands centered 

at 1606 and 1490 cm"^ are due to aromatic ring stretching vibrations. 

The presence of the band at 1450 cm"^ and the fact that the band at 1606 

cm"l is split is solid evidence for the conjugation of the aromatic ring 

with another TT system (169), This could only come about due to the direct 

coupling of aromatic rings during the electrode reaction. 

The strong band at 1210 cm"^ is a carbon-oxygen stretching vibration; 

however, it is not clear whether this bond is due to a phenolic carbon-

oxygen stretching vibration, an aromatic ether carbon-oxygen stretching 

vibration or both. The absorbtion bands at 825 cm'^ and 752 cm"^ are 

carbon-hydrogen out-of-plane bending vibrations. They indicate that the 

aromatic rings are predominantly di-substituted and that the substitution 

is almost exclusively ortho and para in nature, and that there is little, 

if any, meta substitution. This is consistent with resonance theory and 

the proposed reaction mechanism discussed earlier, 

3, Mass spectroscopy 

Mass spectral analysis of the film indicated the presence of a poly­

mer, oligomers, unreacted phenol and quinones. The presence of a polymer 

of fairly high molecular weight was indicated by the fact that a large 

portion of the sample which was placed in the mass spectrometer was not 

volatile at a temperature of 240° C and a pressure of 5 x 10"^ torr. Under 

these conditions the sample did turn black, which indicates carbonization. 

With the probe held at room temperature, prominent peaks were ob­

served at m/e values of 169 and 135 which are probably dimer fragments , 
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The fact that they were observed with the probe at room temperature, in­

dicates that the parent compound is volatile. A diphenyl ether is a pos­

sible identification. 

Even mild heating of the mass spectral probe showed the presence of 

unreacted phenol. Further heating of the probe showed the presence of 

phenol dimers and trimers, hydroxylated dimers, hydroquinone and quinone. 

Extreme heating of the probe resulted in weak signals indicating the 

presence of larger oligomers; however, the evidence for these species is 

not considered sufficient to allow definite conclusions. 

F. Conclusions 

The electrolytic efficiency of the wire detector was slightly less 

than predicted by equations XXV and XXVII on the basis of equation XXVIII. 

This undoubtedly is related to the fact that the boundary condition C = 

Cb was assumed for the solution beyond the diffusion layer in the deriva­

tion of equation XXVIII. The wire flow-through detector is similar to a 

flow-through thin-layer cell wherein the depletion of analyte is significant 

and the boundary condition given above is not applicable. Hence, the flux 

per unit area of electrode steadily decreases below the prediction of Ross 

and Wragg (164) as the fluid passes along the indicating electrode. 

The wire flow-through electrode, while not adhering strictly to the 

published theory for annular electrodes, has proven itself to be a very 

reliable detector. As for any detector applied for continuous analysis 

of fluid streams, accurate analytical application requires careful control 

of the fluid flow rate and calibration with suitable standards. 
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The changes In the observed values of n as a function of flow rate, 

concentration and steric hindrance allowed conclusions concerning the 

mechanism of the electrochemical oxidation of phenol. As mentioned in 

section XII-C, the oxidation of phenol occurs by a mechanism which can re­

sult in either the production of hydroquinone (HQ) or dibenzohydroquinone 

(DBHQ), The former reaction corresponds to a value of n equal to 2 and 

the latter corresponds to a value of n equal to 1. Both of these com­

pounds are subject to further oxidation to the corresponding quinones. 

The reaction which forms DBHQ has a second-order dependence on phenol 

concentration. Considering just this reaction, an increase in the concen­

tration of phenol increases the rate at which DBHQ is formed. This 

raises the observed value of n due to the increased contribution of the 

oxidation of DBHQ to dibenzoquinone (DBQ). The observed decrease in 

the observed value of n with increasing concentration of phenol leads to 

the conclusion of simultaneous reactions. Furthermore, it is concluded 

that the process which results in a lower value of n is favored by this 

increase in concentration of phenol. 

The conclusion that coupled chemical reactions are involved in the 

oxidation of phenol has been presented. This was due to the inverse re­

lationship between the observed value of n and flow rate. It was also 

noted that this relationship was observed over the entire concentration 

range studied. The following sequence of reactions is concluded to occur 

during the electrochemical oxidation of phenol at platinum electrodes: 
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1) Oxidative adsorbtion of phenol, 

2) oxidative desorbtion of the phenoxonium ion, 

3a) reaction with water to form hydroquinone, 

3b) reaction with phenol to form a dimer, 

3c) reaction with a polymeric unit made up of x monomeric units 

to form a polymeric unit made up of x+1 monomeric units, 

4a) oxidation of hydroquinone to quinone, and 

4b) oxidation of dimer to dibenzoquinone or phenoxyphenoxonium ion. 

An alternative mechanism is also possible in which the phenoxy radi­

cal is desorbed and reacts in solution. This alternative mechanism does 

not involve the phenoxonium ion product. A combination of these two 

mechanisms is also possible. 

The higher value of n which was observed for orthocresol is the result 

of steric hindrance of the coupling process. If the coupling process is 

hindered, then the reaction of the intermediate product with water to form 

the corresponding hydroquinone is more probable. The observed variation of 

n with concentration of phenol and cresol is expected to cause calibration 

curves to be non-linear, even when other parameters are carefully con­

trolled. Hence, careful construction of calibration curves for quantita­

tive analysis is necessary. 

Conclusions concerning the manner in which the organic film is built 

up during the oxidation of phenol at platinum anodes and the manner in which 

it is removed during the cleaning procedure have been presented. Additional 

conclusions can be drawn from the data presented. The observed phenomenon 

of film drying and the result of infrared analysis of the film indicate 
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that the polymeric film which is formed on platinum electrodes during 

the anodic oxidation of phenol has a low degree of cross-linking. The 

infrared spectrum indicated that a large majority of the aromatic rings 

are di-substituted. Since crosslinking of linear polymeric units requires 

tri-substitution, the infrared spectrum would be expected to have a dif­

ferent vibrational pattern for the out-of-plane bending if a high, or 

even moderate, degree of crosslinking existed within the polymer. A 

high degree of crosslinking is known to reduce shrinking and swelling of 

chromatographic resins (170). 

The observation of the healing phenomenon and the mass spectral analy­

sis of the film support the conclusion that the film consists of a poly­

meric matrix which contains small units ranging from oligomers to quinones 

and unreacted phenol. The non-volatile portion of the film which was car­

bonized during the mass spectral analysis is concluded to be the polymeric 

matrix. Unreacted phenol, hydroquinone, quinone and dimers were positively 

identified by mass spectral analysis and the presence of oligomers was 

indicated but not proven. As previously stated, the healing phenomenon is 

thought to be the flowing of oligomers and other small phenolic units from 

the intact portion of the film onto the freshly exposed portions of the 

platinum electrode. 

The similarity of the residual voltammagrams of clean and fouled 

platinum electrodes, and the fact that the polymer is removed by the gentle 

force of a stream of water after it has been dried, led to the conclusion 

that the mode of attachment of the bulk of the film is primarily mechanical 

in nature. Portions of the film which have formed into and around . 
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irregularities on the surface of the electrode shrink upon drying and re­

lease themselves from these irregularities. The observation of the large 

potential necessary to remove the film from the electrode surface, and the 

appearance of the electron microphotographs of partially clean electrodes, 

led to the conclusion that the perforations of the film are the result 

of miniature explosions on the electrode surface. The partial pressure 

of oxygen behind the film during the cleaning process is considered to be 

significant and can literally blow out portions of the film after it has 

been weakened by the action of the ferric and chloride ions. 

Consideration must be given to the possibility that the bulk of the 

polymeric film is unaffected by the action of the ferric and chloride ions 

during the cleaning process. The degradation of the points of mechanical 

attachment of the film to the electrode surface can also result in the 

observed phenomena. The probability of a section of the film being blown 

out by the oxygen pressure behind it increases if the attachment points 

of that section of film are weakened. The exact nature of the action of 

the ferric and chloride ions is not known. One possibility is that 

chlorination of the aromatic rings is taking place and this chlorination 

process weakens the film. Another possibility is that the ferric ion is 

catalyzing the degradative cleavage of the aromatic rings. Ferric ion has 

been shown to catalyze reactions of this type (171), If this is the role 

of ferric ion, then the role of chloride ion is still unknown. 
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VII. ANALYSIS OF WATER FOR PHENOLS 

A. Introduction 

The applicability of any new analytical procedure to samples as they 

are found in nature or produced industrially is of paramount importance. 

Potential interferences must be removed by way of extraction, or precipi­

tation, separated by way of chromatography, or rendered inactive by one 

or more chemical reactions. Alternately the analyte or analytes may be 

separated from the matrix by extraction, chromatography, or precipitation. 

Derivativization is another technique which is used in an effort to aid 

in separation or detection of the analyte species. 

Many procedures are tedious, time consuming and involve extensive 

sample pretreatment. Current trends are away from these types of pro­

cedures. Procedures which involve little sample pretreatment, require 

small amounts of sample, and can provide analytical information on more 

than one analyte are desirable. Other characteristics of desirable 

analytical procedures are low cost of analysis, reduced complexity of 

the apparatus employed, and good sensitivity and reproducibility. 

B. Chromatography 

The electrochemical activity of phenol has been established. The 

chlorosubstituted phenols are also electrochemically active. This fact 

has also been reported by others (136). The liquid chromatographic 

separation of the chlorophenols has also been reported (136, 172). The 
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chromatographic column material which was described in section IV.A, page 

51, of this thesis was found to separate the chlorophenols under iso-

cratic conditions as shown in Figure 37. The methanol in this sample 

stemmed from the use of methanol as a solvent in the standard solutions 

as described in Chapter V. Separation was not complete and an improvement 

in the chromatography was desirable. 

Another negative feature of this column was the dilution of the 

sample during the chromatography. This effect was demonstrated by the 

chromatograms shown in Figure 38. The peak marked A was the detector re­

sponse to an injection of 5.0 ppb of phenol with the detector connected 

directly to the injection valve. The peak marked B was for an injection 

of 1,0 ppm of phenol with the chromatographic column installed into the 

flow-injection analyzer. A large portion of this dilution was unavoid­

able; however, it is thought that at least part of it can be controlled 

by altering the column dimensions. This particular column appeared to 

dilute the sample by a factor of approximately 280, 

Although the detector was capable of detecting phenol at concentra­

tions as low as 1 ppb as shown in Figure 39, column dilution appeared to 

raise this detection limit. Figure 40 shows the detector response to 

200 ppb phenol in tap water with the column in place between the injection 

valve and detector. If the detection limit is defined as that level 

of phenol which produces a signal-to-noise ratio of two, then the de­

tection limit of this particular procedure is calculated to be approxi­

mately 50 ppb. 
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Figure 37. Chromatographic separation of chlorinated phenols 

Eluent: 29% acetonltrlle - 71% 0.050 N sulfuric acid 
Flow rate; 1.00 mL min-1 
Applied potential; 1.300 V vs. SCE 
Sample volume; 0.0710 mL 
Analyte concentration; All phenols - 10 uM 
Peak Identification; A; Methanol 

B; Phenol 
C; 2-Chloro,3-chloro & 4-chloro phenol 
D; 2,6-Dlchloro phenol 
E; 2,3-Dlchloro, 2,4-dlchloro, 2,5-dlchloro, 

3,4-dlchloro & 3,5-dlchloro phenol 
P; 2,3,6-Trichloro & 2,4,6-Trichloro phenol 
G; 2,3,4-Trlchloro, 2,3,5-trlchloro, 2,4,5-

trlchloro & 3,4,5-trichlorô phenol 
H; 2,3,4,5-Tetrachloro phenol pentachloro 

phenol 
Column; fully sulfonated polystyrene, 4% crosslinking, 23-38 uM, 25 cm x 1 cm dla. 
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Figure 38. Effect of column dilution 

Carrier solution; 29% acetonitrile - 71% 0.050 N sulfuric 
acid 

Flow rate: 1.00 mL min"^ 
Applied potential; 1.300 V vs. SCE 
Sample volume; 0.0710 mL 
Peak A - 5.0 ppb phenol without column in system 
Peak B - 1.0 ppm phenol with column in system 
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Figure 39, Response of wire detector to 0.71 picomoles of phenol 

Carrier solution; 0.10 M perchloric acid 
Flow rate: 1.00 mL min"^ 
Applied potential: 1.200 V vs. SCE 
Sample volume: 0,0710 mL 
Analyte concentration; 1.0 ppb 
Remarks; Detector connected directly to injection valve 
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Figure 40. Response of liquid chromatographic analyzer to 142 pico-
moles of phenol 

Eluent: 29% acetonitrile - 71% 0.050 N sulfuric acid 
Flow rate: 1.00 mL min"^ 
Applied potential: 1.300 V vs. SCE 
Sample volume: 0.0710 mL 
Analyte concentration: 200 ppb 
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Afghan et al. used n-butyl acetate in a successful effort to concen­

trate phenols at trace levels (57). This procedure was tested for a mix­

ture of phenols in water. The solid line of Figure 41 shows the detector 

response to a single injection of a solution which was 0.10 mM in each of 

six phenols. The phenols chosen were: phenol, p-chlorophenol, 2,4-

dichlorophenol, 2,6-dichlorophenol, 2,4,5-trichlorophenol and 2,4,6-

trichlorophenol. The dashed line shows the detector response to a 1:100 

dilution of this same solution with the detector sensitivity unchanged. 

Figure 42 shows the detector response to a n-butyl acetate extract of 

this diluted solution. The extraction procedure consisted of acidify­

ing 1 L of the solution to be extracted with 5.0 mL of concentrated sul­

furic acid, and then extracting this solution with 10.0 mL of n-butyl 

acetate. After mixing thoroughly, the organic layer was allowed to 

separate in the neck of the volumetric flask. The n-butyl acetate was 

then injected directly. Although the extraction appeared to have been 

quite successful, the result was certainly less than ideal. The chromato­

graphic separation was severely reduced in efficiency and the response of 

the detector to the change in solvent composition was not separated from 

the phenols. Furthermore, the electrochemical reaction of phenol in the 

presence of large quantities of n-butyl acetate was not known. 

Subsequent injection of the original phenolic solution showed a marked 

change in the chromatographic separation of the phenols. This effect is 

shown in Figure 43. Calculation of the number of theoretical plates of 

the column according to the formula n = 16(Vr/W)2, where n is the number 

of theoretical plates, Vr is the retention volume of a given peak and W 
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Figure 41. Response of liquid chromatographic analyzer to selected 
phenols 

Eluent; 29% acetonitrile - 71% 0.050 N sulfuric acid 
Flow rate; 1.00 mL min"^ 
Applied potential: 1.300 V vs. SCE 
Sample volume; 0.0710 mL 
Analyte concentration; Solid line - 1.0 mM in each phenolic 

compound in aqueous solution 
Dashed line - 1.0 uM in each phenolic 
compound in aqueous solution 

Peak identification: A- Solvent front 
B- Methanol 
C- Phenol 
D- 4-Chlorophenol 
E- 2,6-dichlorophenol 
F- 2,4-dichlorophenol 
G- 2,4,6-trichlorophenol 
H- 2,4,5-trichlorophenol 
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Figure 42. Response of liquid chromatographic analyzer to an n-butyl 
acetate extract of a phenol solution 

Eluent; 29% acetonitrile - 71% 0.050 N sulfuric acid 
Flow rate; 1.00 mL min"^ 
Applied potential; 1.300 V vs. SCE 
Sample volume; 0.0710 mL 
Concentration of phenols in extracted solution: 

10 uM in each of phenol 
4-chlorophenol 

2,4-dichlorophenol 

2,6-dichlorophenol 
2,4,5-trichlorophenol 
2,4,6 -trichlorophenol 
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Figure 43. Improved chromatographic separation of chlorinated phenols after treatment of chromato­
graphic resin with n-butyl acetate 

Eluent: 29% acetonltrlle - 71% 0.050 N sulfuric acid 
Flow rate: 1.00 mL mln"^ 
Applied potential: 1.300 V vs. SCE 
Sample volume: 0.0710 mL 
Analyte concentration: 1.0 mM In each phenolic compound 
Peak Identification; A- Solvent front 

B- Methanol 
C- Phenol 
D- 4-chlorophenoI 
E- 2,6-dichlorophenol 
F- 2,4-dichlorophenol 
G- 2,4,6-trlchlorophenol 
H- 2,4,5-trlchlorophenol 
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is the width of the base of that same peak expressed in volume of eluent, 

yielded 1156 theoretical plates before exposure of the column to n-

butyl acetate and 1271 theoretical plates after exposure of the column 

to n-butyl acetate. This was an increase of slightly less than 10%. 

One may have expected the peak resolution to increase by approximately 10%; 

however, when peak resolution was calculated, it was found to increase by 

55% in this particular case. Other similar experiments yielded in­

creases in peak resolution of over 100%. 

It is apparent that the entire character of the column was changed 

by the injection of the butyl acetate. The matrix of the resin was poly­

styrene which was crosslinked with 4% (W/W) divinyIbenzene. The poly­

styrene was fully sulfonated, which gave it the properties of a strong 

cation-exchange resin. Since phenol is not cationic, it seems reasonable 

that the hydrophobic portions of the resin were involved in the separation 

of phenols. This was solid-liquid chromatography and at this point the 

presence of the sulfonic acid groups appeared to be of little value in 

controlling the separation. Two explanations have been put forth as to 

the function of the sulfonic acid groups , the first of which was suggested 

by Armentrout, McLean and Long (136). Their explanation is that the 

sulfonic acid groups merely retain cations such as trace metals and amines 

which could interfere with the phenol determination. The second explana­

tion was presented by Rich and Johnson of Dionex Corporation (173). 

Their explanation is that the sulfonic acid groups form an ionic barrier 

or membrane through which potential adsorbents must diffuse. This sets up 

a layer surrounding each polystyrene particle which is relatively highly 
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ordered. Furthermore, since the layer has the polystyrene matrix as 

one of its boundaries, this area contains a higher proportion of the 

organic fraction of the eluent. Hence, phenol has a higher affinity 

for this layer which is higher in organic character. 

These two effects are not contradictory and both of them may ex­

plain the observed phenomena which occurs during sample analysis. The 

explanation by Rich and Johnson does appear to account, in part, for 

the increase in peak resolution once the column has been exposed to 

n-butyl acetate. The n-butyl acetate contained in the layer around each 

particle of resin can certainly be expected to change the chromatographic 

characteristics of the column. This is an example of liquid-liquid 

chromatography with the polystyrene resin functioning as a solid support 

for the stationary liquid phase of n-butyl acetate. This increased 

resolution of the chromatographic peaks, which was observed after the 

chromatographic column had been exposed to n-butyl acetate, would be ex­

pected to occur for other solid chromatographic materials such as XAD-2 

or XAD-7. 

C. Analysis of Drinking Water 

Drinking water from a water fountain in Oilman Hall of Iowa State 

University was analyzed for phenol and chlorinated phenols.- This water 

is known to originate from the municipal water treatment facility of Ames, 

Iowa. The procedure consisted of injecting the sample into the flow-

injection analysis system and recording the detector response which fol­

lowed. The response of the detector is shown in Figure 44. Two 
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Figure 44, Response of liquid chromatographic analyzer to drinking water 

Eluent: 29% acetonitrile - 71% 0,050 N sulfuric acid 
Flow rate: 1.00 mL min"^ 
Applied potential: 1,300 V vs, SCE 
Sample volume: 0.0710 mL 
Sample source: Drinking fountain, First floor of Oilman 

Hall, Iowa State University, Ames, Iowa 
Peak identification: A- Solvent front 

B- Unknown 
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chromatographic peaks (A and B) were recorded with retention times of 

4.5 and 17 minutes. Peak A is the response to the change in solvent com­

position and this phenomenon is also observed for injection of distilled 

water as shown in Figure 45. 

The exact retention time of phenol was determined to be 24 minutes 

under the conditions employed by recording the detector response to an 

injection of 1 ppm phenol in triply distilled water as shown in Figure 

46. Phenol was then added to a sample of drinking water such that its 

concentration was 1 ppm. The detector response to this sample is shown 

in Figure 47. This amply demonstrates that phenol can be chromatograph-

ically separated from potential interfering species in drinking water 

and detected electrochemically with no sample pretreatment. Drinking 

water was injected again to determine if detectable levels of chlorinated 

phenols were present in the sample. No significant signals were re­

corded over a 3-hour period. The sample was then extracted with n-

butyl acetate according to the previously described procedure. The n-

butyl acetate extract was injected and, again, no significant signals 

were recorded over a 3-hour period. 

D, Conclusions 

The chromatographic separation of phenol and chlorinated phenols 

was significantly improved by exposure of the chromatographic material 

to n-butyl acetate. It is concluded that the chromatographic resin 

functions as a solid support for a stationary phase of adsorbed n-butyl 

acetate. The chromatography employed clearly separated phenol and the 
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Figure 45. Response of liquid chromatographic analyzer to triply dis­
tilled water 

Eluent; 29% acetonitrile - 71% 0.050 N sulfuric acid 
Flow rate; 1.00 mL min"^ 
Applied potential: 1.300 V vs. SCE 
Sample volume; 0.0710 mL 
Peak identification; A- Solvent front 
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Figure 46. Response of liquid chromatographic analyzer to 1,0 ppm 
phenol in triply distilled water 

Eluent: 297. acetonitrile - 71% 0.050 N sulfuric acid 
Flow rate; 1.00 mL min'^ 
Applied potential: 1.300 V vs. SCE 
Sample volume; 0.0710 mL 
Peak identification; A- Solvent front 

C- Phenol (1.0 ppm) 
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Figure 47. Response of liquid chromatographic analyzer to 1.0 ppm phenol 
in drinking water 

Eluent; 29% acetonitrile - 71% 0.050 N sulfuric acid 
Flow rate; 1.00 mL min"^ 
Applied potential; 1.300 V vs. SCE 
Sample volune; 0.0710 mL 
Peak identification; A- Solvent frodt 

B- Unknown 
C- Phenol (1,0 ppm) 
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chlorophenols from such interferences as the solvent front, methanol and 

an unidentified peak in the drinking water sample which is thought to be 

ferrous ion. When extracts in n-butyl acetate were injected, phenol and 

the chlorophenols were not retained sufficiently on the column to 

separate them from the detector response to the.change in solvent compo­

sition. 

The procedure developed for the determination of phenol and 

chlorinated phenols meets the desired criteria listed in the introduction 

to this chapter. The analysis of drinking water demonstrated that the 

sample contained no detectable levels of phenol or chlorinated phenols. 

Although the detection limit for the flow-injection analysis was demon­

strated to be slightly less than one picomole of phenol, column dilution 

in the chromatographic procedure raised the detection limit to 36 pico-

moles (50 ppb). The detection limit may be lowered by using a larger 

sample loop and a smaller, more efficient chromatographic column. It is 

suggested that turbid samples be filtered prior to analysis. Quantita­

tion should be accomplished by the methods of standard additions and in­

ternal standards. These methods will alleviate the problems of matrix 

effects and changes in detector sensitivity. It is also suggested that 

each liter of sample which is not going to be analyzed immediately be 

acidified with 5 ml of concentrated sulfuric acid to inhibit air oxi­

dation of phenols in the sample. 
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VIII, SUMMARY 

The oxidation of phenol at platinum anodes occurs by ah electro­

chemical oxidation followed by simultaneous chemical reactions in the 

solution. The products of these reactions are subject to further oxida­

tion at the electrode surface. The organic film which is formed on 

platinum electrodes from the oxidation of phenol at relatively high con­

centrations is mechanically attached to the surface of the electrode and 

is not chemically adsorbed to any significant degree. This film severely 

hinders the mass transport of many electrochemically active species. 

Dissolved oxygen can diffuse rapidly through this film to react at the 

electrode surface. The film consists of oligomers and other small phenolic 

units contained in a polymeric matrix which has a low degree of cross 

linking. 

The anodization of the electrode in an acidic solution of ferric 

chloride was discovered to remove the polymeric film from the electrode 

surface. This cleaning process results in perforation of the organic 

film which exposes electrochemically active regions of the electrode sur­

face. Perforation of the films occurs by a process that weakens the bulk 

of the film and/or the points of mechanical attachment. The partial 

pressure of oxygen existent behind the film is then sufficient to rup­

ture the weakened areas. 

Phenol and chlorinated phenols can be concentrated by extraction 

into n-butyl acetate. The presence of n-butyl acetate does Interfere with 

chromatographic separation and electrochemical detection of these phenols. 

The chromatographic separation of phenol and chlorinated phenols can be 
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significantly improved by exposure of the chromatographic column to 

n-butyl acetate. The wire flow-through detector described perfoirms well 

and is not plagued by the problems associated with tubular detectors. 

Calibration curves are expected to be non-linear. 
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IX. SUGGESTIONS FOR FUTURE WORK 

The limitations on future work in this area of electrochemistry 

are virtually nonexistent. The entire field of the electrochemistry 

of aromatic compounds appears to be wide open. The most exciting aspect 

is the possibility of applying electroanalysis to the determination of 

aromatic and other organic compounds at trace levels in aqueous solution. 

The complete characterization of the polymeric films which are 

formed on the surface of the anode during the oxidation of aromatic com­

pounds is, in itself, a formidable challenge. The determination of the 

mechanism by which these films are formed may lead to new methods to con­

trol their structure. The permeability of these films to dissolved 

oxygen, while severely hindering the action of species which are known 

to interfere with the electrochemical reduction of oxygen, may lead to 

the development of an electrode which is superior to the Clark Electrode 

in both sensitivity and response time. Investigations into the nature of 

organic films which are formed during the electrochemical oxidation of 

other organic compounds should be made, Analine, pyridine, furan, the 

cresols and the polycyclic aromatic compounds are only a few possi­

bilities. There is ample evidence in the literature of the importance of 

phenolic films as corrosion inhibitors. The determination of the nature 

of these films may be useful in determining the strengths and weaknesses 

of these protective films. 

The processes for reactivating electrodes is another area where ex­

tensive research should be performed. The substitution of other metal 



www.manaraa.com

176 

X. LITERATURE CITED 

1. Diehl, H. "Quantitative Analysis: Elementary Principles and 
Practice", 2nd ed.; Oakland Street Science Press; Ames, Iowa, 
1978; p 343. 

2. Spencer, W. R. Ph.D. Dissertation, Iowa State University, Ames, 
Iowa, 1951, 

3. Reio, L, J. Chromatography 1974, 88, 119. 

4. Marenzi, A. D. Compt. Rend. Soc. Biol. 1931, 107, 737. 

5. Deichman, W.; Shafer, L. J, Ind. Eng. Chem., Anal. Ed. 1942, 14, 310. 

6. Adams, R. N. Anal. Chem. 1976, 48, 1126A. 

7. White, A.; Handler, P.; Smith, E. L, "Principles of Biochemistry", 
5th ed.; McGraw Hill Book Company; New York, New York, 1973; pp. 92-
96. 

8. Chem. Eng. News 1978, 56(44), 12. 

9. Morrison, R. T.; Boyd, R. N. "Organic Chemistry", 3rd ed.; Allyn 
and Bacon, Inc.; Boston, Massachusetts, 1973; p 791. 

10. "Drinking Water and Health"; National Academy of Sciences: Washing­
ton, D.C., 1977; p 108. 

11. Brown, R. B. M. Gas Assoc. Monthly 1919, 1, 189. 

12. El1ms, J. W. Eng. News Record 1924, 92, 453. 

13. Taras, M. J., Ed.; "Standard Methods for the Examination of Water and 
Wastewater", 13th ed.; American Public Health Association: Washing­
ton, D.C.; p 501 

14. Schreiner, 0.; Reed, H. S. Bot. Gaz. 1908, 45, 73. 

15. Buelens, A. Bull. Soc. Chim. Belg. 1912, 26, 351. 

16. Cano, F. G.; Townsend, T. M.; Valentine, J. J. Med. Press and Circu­
lar 1917, 103, 434; Chem. Abstr. 1918, 12(1), 950. 

17. Boyd, J, E. J. Roy, Army Med. Corp 1925, 45, 138. 

18. Thomann Schweiz, Wochschr, Chem, Pharm. 1911, 49, 121; Chem. Abstr, 
1911, 5(3), 2381, 



www.manaraa.com

175 

ions for ferric ion in the cleaning process, as well as other anions for 

chloride, may provide insight into the mechanism of the cleaning process. 

The effects of solvent, pH, and substitution of other electrode materi­

als, such as gold, for platinum on both the deactivation and reactiva­

tion processes needs to be investigated. An understanding of the reactiva­

tion process could also be beneficial in the development of better cor­

rosion inhibitors. 

The design of the wire detector can be modified to increase the sig­

nal to noise ratio. Suggested modifications include changing the length 

of the exposed portion of the wire indicator electrode, changing the 

diameter of the wire and altering the clearance between the wire and the 

body of the detector. Isolation of the reference electrode behind an ion 

exchange membrane is suggested. 

One of the more interesting aspects of this research has been the 

chromatography. The observed increase in peak resolution in the presence 

of n-butyl acetate is a phenomenon which should be thoroughly investigated. 

The use of other organic stationary phases, as well as bonded stationary 

phases, is an area which has great potential for increasing the analytical 

resolution. These topics hold excellent promise as solutions to the 

problems of corrosion and the monitoring of environmental pollution. 

One could spend a lifetime investigating these areas and related phenomena, 

provided of course, that adequate funding is available. 
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